
Data Acquisition Toolbox™ Adaptor Kit 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Data Aquisition Toolbox™ Adaptor Kit User's Guide

© COPYRIGHT 2000–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2000 Online only New for Version 1 (Release 12)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Minor revision for Version 2.5 (Release 14)
September 2005 Online only Minor revision for Version 2.7 (Release 14SP3)
March 2006 Online only Minor revision for Version 2.9 (Release 2006a)
March 2008 Online only Minor revision for Version 2.12 (Release 2008a)

Contents
1
Introduction

Overview . 1-2
Who Should Read This Document? . 1-2
What Knowledge Is Required? . 1-2
What Effort Is Required? . 1-2
Tools . 1-3

Writing an Adaptor Versus Writing a MEX File 1-4

What Is the Adaptor Kit? . 1-6

Toolbox Architecture . 1-9

Using This Manual . 1-11

2
Tutorial

Overview . 2-2
A Basic View of Toolbox-Engine-Adaptor Relationships 2-2

Example: an Analog Input Session . 2-3

Example: an Analog Output Session . 2-8

Example: a Digital I/O Session . 2-10
i

ii Contents
3
Step-by-Step Instructions for Adaptor Creation

Overview: Building the Adaptor . 3-2

Toolbox Adaptors . 3-3
The winsound Adaptor . 3-3
The cbi Adaptor . 3-3
The nidaq Adaptor . 3-4
The hpe1432 Adaptor . 3-5
The keithley Adaptor . 3-5

About the Demo Adaptor Software . 3-7
Features . 3-7
Limitations . 3-7
Modifying the Demo Adaptor . 3-7

Stage 1 Select Supported Features . 3-9
Limitations of Software-Clocked Adaptors 3-11

Stage 2 Create the Adaptor Project and Adaptor Class . .3-12
Step 2.1 Adaptor and Project Naming 3-12
Step 2.2 Add Include, Link, and MIDL Directories to

Your Project . 3-13
Step 2.3 Define Adaptor Classes in the IDL File 3-14
Step 2.4 Add the Demo Adaptor Class Code 3-14
Step 2.5 Modify the Adaptor Class AdaptorInfo() Method . . . 3-16

Stage 3 Implement the Analog Input Subsystem 3-18
Step 3.1 Select Property Values, Ranges, and Defaults for

Analog Input . 3-19
Step 3.2 Add the Demo Analog Input Code to Your Project . . 3-22
Step 3.3 Modify the OpenDevice Method of the Adaptor Class 3-24
Step 3.4 Modify the Analog Input Open and

SetDaqHwInfo Methods . 3-24
Step 3.5 Implement the SetProperty and

SetChannelProperty Methods . 3-29
Step 3.6 Implement the ChildChange Method 3-33
Step 3.7 Implement the GetSingleValue Method 3-35
Step 3.8 Implement the GetSingleValues Method 3-37

Step 3.9 Implement the Start, Trigger, and Stop Methods . . 3-38
Returning Errors from Your Adaptor . 3-45

Stage 4 Implement the Analog Output Subsystem3-46
Step 4.1 Select Property Values, Ranges, and Defaults for

Analog Output . 3-47
Step 4.2 Add the Demo Analog Output Code to Your Project . 3-48
Step 4.3 Modify the OpenDevice Method of the Adaptor Class 3-48
Step 4.4 Modify the Analog Output Open and

SetDaqHwInfo Methods . 3-48
Step 4.5 Implement the SetProperty and

SetChannelProperty Methods . 3-49
Step 4.6 Implement the ChildChange Method 3-49
Step 4.7 Implement the PutSingleValue Method 3-49
Step 4.8 Implement the PutSingleValues Method 3-50
Step 4.9 Implement the Start, Trigger, and Stop Methods . . 3-51

Stage 5 Implement the Digital I/O Subsystem 3-54
Step 5.1 Select Property Values, Ranges, and

Defaults for Digital I/O . 3-55
Step 5.2 Add the Digital I/O Code from an Adaptor to

Your Project . 3-55
Step 5.3 Modify the OpenDevice Method of the Adaptor Class 3-56
Step 5.4 Modify the DigitalIO Open and

SetDaqHwInfo Methods . 3-57
Step 5.5 Modify the SetPortDirection Method 3-57
Step 5.6 Implement the ReadValues Method 3-58
Step 5.7 Implement the WriteValues Method 3-59
iii

iv Contents
4
Working with Properties

Overview . 4-2

Accessing Properties from Your Adaptor 4-4
Accessing a Property Using GetProperty 4-4
Attaching to a Property . 4-5

Creating Adaptor-Specific Properties 4-8

Modifying Property Values, Defaults, and Ranges 4-10
Setting a Range to Infinity . 4-11

Working with Enumerated Properties 4-12

Passing Arrays to MATLAB Using Safe Arrays 4-14

5
Buffering Techniques

Overview . 5-2

Understanding Engine Buffers . 5-3

Implementing Buffering in Your Adaptor 5-6
Direct Buffering . 5-6
Intermediate Buffering . 5-9

6
Callbacks and Threading

Overview . 6-2

Monitoring Progress of Acquisition Tasks 6-3
Event Messaging from Device Drivers . 6-3
Polling the Driver for Acquisition Status 6-4

Threading Your Adaptor’s Task Monitoring Methods 6-6
Implementing Callbacks in a Separate Thread 6-6
Implementing Event Messaging in a Separate Thread 6-7
Implementing Polling in a Separate Thread 6-8

A
Adaptor Kit Interface Reference

Overview . A-2

ImwDevice . A-3
FreeBufferData . A-4
SetChannelProperty . A-4
SetProperty . A-5
Start . A-6
Stop . A-7
GetStatus . A-7
ChildChange . A-8

ImwAdaptor . A-10
AdaptorInfo . A-10
OpenDevice . A-12
TranslateError . A-14

ImwInput . A-15
GetSingleValues . A-15
PeekData . A-15
Trigger . A-17
v

vi Contents
ImwOutput . A-18
PutSingleValues . A-18
Trigger . A-18

ImwDIO . A-19
ReadValues . A-19
WriteValues . A-20
SetPortDirections . A-21

B
Engine Interface Reference

IPropRoot . B-2
GetRange . B-3
SetRange . B-3
GetType . B-4
get_DefaultValue . B-5
put_DefaultValue . B-5
get_IsHidden . B-6
put_IsHidden . B-6
get_IsReadonlyRunning . B-7
put_IsReadonlyRunning . B-8
get_IsReadonly . B-9
put_IsReadonly . B-9
get_User . B-10
put_User . B-11
get_Name . B-12
put_Name . B-12
IsValidValue . B-13

IDaqEngine . B-14
DaqEvent . B-15
GetBuffer . B-16
GetBufferingConfig . B-17
GetTime . B-18
PutBuffer . B-19
WarningMessage . B-20
PutInputData . B-21
GetOutputData . B-22

IDaqEnum . B-23
AddEnumValues . B-23
ClearEnumValues . B-23
RemoveEnumValue . B-24
EnumValues . B-25

IDaqMappedEnum . B-26
AddMappedEnumValue . B-26
FindString . B-27
FindValue . B-27

IPropValue . B-29
get_Value . B-29
put_Value . B-30

IPropContainer . B-31
CreateProperty . B-32
GetMemberInterface . B-34
put_MemberValue . B-36
get_MemberValue . B-37

IChannel . B-38
get_PropValue . B-38
put_PropValue . B-39
UnitsToBinary . B-39
BinaryToUnits . B-40
vii

viii Contents
IChannelList . B-41
GetChannelContainer . B-41
GetChannelStruct . B-42
GetNumberOfChannels . B-43
CreateChannel (proposed) . B-44
DeleteChannel . B-44
DeleteAllChannels . B-45

C
Engine Structures

The BUFFER_ST Structure . C-3

The NESTABLEPROP Structure . C-5

D
Sample Property and daqhwinfo Tables

Table of daqhwinfo Properties . D-3
Adaptor daqhwinfo Table . D-3
Analog Input daqhwinfo Table . D-3
Analog Output daqhwinfo Table . D-5
Digital I/O daqhwinfo Table . D-6

Property Info Tables . D-7
Analog Input Subsystem Properties . D-7
Analog Output Subsystem Properties . D-9
Digital I/O Subsystem Properties . D-10

Who Should Read This Document? 1-2
What Knowledge Is Required? 1-2
What Effort Is Required? 1-2
Tools . 1-3

Writing an Adaptor Versus Writing a MEX File 1-4

What Is the Adaptor Kit? 1-6

Toolbox Architecture 1-9

Using This Manual 1-11
1

Introduction

Overview . 1-2

1 Introduction

1-2
Overview

Who Should Read This Document?
You should read this document if you want to

• Develop an adaptor to support hardware that is not currently supported by
the Data Acquisition Toolbox

• Add new features to an existing adaptor

The Data Acquisition Toolbox Adaptor Kit addresses the needs of individuals
who want to interface the toolbox to a single board, and manufacturers wanting
to interface the toolbox to a range of hardware. Although this document is
aimed primarily at supporting a single board, hardware manufacturers should
use this document as the basis for developing a multiple-board adaptor,
generalizing the single-board support issues appropriately.

What Knowledge Is Required?
To build an adaptor, you should have a working knowledge of

• C++, Microsoft’s Component Object Model (COM), and the Active Template
Library (ATL)

• The functionality of your hardware device, and its associated Application
Programming Interface (API)

• Data Acquisition Toolbox concepts, functionality, and terminology as
described in the Data Acquisition Toolbox User’s Guide

What Effort Is Required?
The effort required to produce an adaptor depends on the capabilities of the
hardware device and your acquisition requirements.

The simplest type of adaptor supports only single-sample acquisition or burst
acquisition, and uses software clocking. You can create this type of adaptor by
modifying the demo adaptor.

Overview
Note Some hardware does not support single-sample acquisition and, as a
result, it does not support software clocking. In this case, you cannot build this
simple type of adaptor.

The next level of complexity is an adaptor that implements hardware clocking
and buffering, but works only for a limited number of similar hardware devices.
In this case, you can decrease development time by hard-coding some
configuration information or by limiting the hardware features that you use.
For example, you might decide to ignore some triggering functionality.

The greatest level of complexity is an adaptor that provides complete support
to a line of data acquisition devices. To develop an adaptor of this type typically
requires a minimum of four months.

Tools
The example code for the Adaptor Kit was created using Microsoft Visual C++
Version 6, Service Pack 4.
1-3

1 Introduction

1-4
Writing an Adaptor Versus Writing a MEX File
To communicate with your hardware, you can develop either an adaptor DLL,
which extends the existing Data Acquisition Toolbox, or you can create a MEX
file.

A MEX file is a shared library (DLL in Windows), which you call from MATLAB®
as if it is an internal MATLAB command or an M-file. It can contain multiple
functions, which are called from MATLAB as parameters added to the MEX file
name. MEX files can be implemented on any platform supported by MATLAB.

You might want to create a MEX file if the supported data acquisition
functionality is simple, for example, single-sample or burst mode acquisition.
You must create a MEX file in these circumstances:

• You want to use a platform not supported by the Data Acquisition Toolbox.

• You want to support features not included in the Data Acquisition Toolbox.

For advanced data acquisition tasks, you should develop an adaptor. This
approach gives you an advantage of having multiple prepackaged features,
such as high-speed storage to disk, multiple triggering modes, including analog
and pretriggering, and a standardized interface to the data acquisition device,
including units conversion.

The table below summarizes the capabilities of adaptor DLLs and MEX files.

Table 1-1: Adaptor DLLs Versus MEX Files

Feature Adaptor DLL MEX File

Supports all MATLAB
platforms

No Yes

Counter/timer No Can be implemented

Software triggering
implementation

Implemented
automatically

Very difficult to
implement

Software clocking
implementation

Implemented
automatically

Very difficult to
implement

Logging to disk Implemented
automatically

Very difficult to
implement

Writing an Adaptor Versus Writing a MEX File
Integrated into MATLAB
with MATLAB objects

Yes No

Callbacks Provided in the
toolbox

Difficult to
implement

Background (asynchronous)
and continuous acquisition

Provided in the
toolbox

Difficult to
implement

Table 1-1: Adaptor DLLs Versus MEX Files (Continued)

Feature Adaptor DLL MEX File
1-5

1 Introduction

1-6
What Is the Adaptor Kit?
The Data Acquisition Toolbox Adaptor Kit consists of three major parts:

• This document

• The demo adaptor source code, which is located in the
matlabroot\toolbox\daq\daqadaptor directory. This directory contains
two subdirectories: AdaptorKit and Demo.

AdaptorKit contains files that are common to all adaptors. Normally you
would place these files in the include subfolder. Demo contains files that are
specific to a particular adaptor — in this case the demo adaptor. The list of
files in both directories is given in the following table.

Table 1-2: Demo Adaptor Source Code

Subfolder File Description

AdaptorKit AdaptorKit.h Contains definitions for non-device-specific classes and
templates that are used for creating all adaptors. The
defined classes provide support for software clocking,
buffering, and triggering.

AdaptorKit.cpp Defines functions for the classes contained in AdaptorKit.h.
Contains GUIDs for the engine. Defines high- and
low-resolution timers using Windows Multimedia methods.

daqmex.idl Interface definition file used to define the COM interfaces of
the data acquisition engine (daqmex).

daqmex.h Built from daqmex.idl by the Microsoft IDL compiler MIDL.

DaqmexStructs.h Defines most of the structures used by adaptor DLLs and the
data acquisition engine.

SArrayAccess.h Defines classes and templates used for creating and
managing safe arrays and vectors.

What Is the Adaptor Kit?
• The full source code for the adaptor DLLs included with the Data Acquisition
Toolbox. All source code files are located in the folder

Demo demo.dsp Project file for building the demo adaptor.

demo.def Definition file for building demo.dll.

demo.cpp Defines the entry point into demo.dll.

demo.rc Resource script file generated by the Microsoft Developer
Studio.

demo.idl Interface definition file for the demo adaptor. All demo
adaptor-specific interfaces are defined here.

resource.h File is generated by the Microsoft Developer Studio.
Contains definitions for constants used by the demo adaptor
program.

demoin.h Defines the class Cdemoin, which implements the analog
input interface ImwInput. This interface provides for
software clocking.

demoin.cpp Defines functions for the Cdemoin class, which is defined in
demoin.h.

demoadapt.h Defines the class Cdemoadapt, which implements the
interface ImwDemoadapt. This interface declares methods
that are common to the entire adaptor.

demoadapt.cpp Defines functions for the Cdemoadapt class, which is defined
in demoadapt.h.

StdAfx.h Defines some directions for the compiler, and internally
includes standard system header files.

StdAfx.cpp Internally includes standard system headers. Both
StdAfx.cpp and StdAfx.h provide better organization of the
header sections of the files in the project.

Table 1-2: Demo Adaptor Source Code (Continued)

Subfolder File Description
1-7

1 Introduction

1-8
MATLABROOT/toolbox/daq/daq/src, which contains the subfolders listed
below.

Table 1-3: Data Acquisition Toolbox Adaptor Source Files

Folder Name Description

computerboards Contains full source code for building the adaptor DLL for ComputerBoards
(Measurement Computing Corp.) devices. The adaptor name is cbi and the
adaptor DLL name is mwcbi.dll.

hpe1432 Contains full source code for building the adaptor DLL for the Agilent
Technologies E1432/33/34 devices. The adaptor name is hpe1432 and the
adaptor DLL name is mwhpe1432.dll.

mwnidaq Contains full source code for building the adaptor DLL for National
Instruments devices supported by the NI-DAQ driver. The adaptor name is
nidaq and the adaptor DLL name is mwnidaq.dll.

winsound Contains full source code for building the adaptor DLL for the generic sound
card, which uses the Windows Waveform Audio driver. The adaptor name is
winsound and the adaptor DLL name is mwwinsound.dll.

keithley Contains full source code for building the adaptor DLL for Keithley
Instruments devices. The adaptor name is keithley and the adaptor DLL
name is mwkeithley.dll.

include Contains common files for building all adaptor DLLs. This folder is
practically identical to the folder AdaptorKit, included in the demo adaptor
source. However, it includes these three additional files:

• daqtbxver.h — Version control file

• thread.h — Contains definitions of the thread class and classes necessary
to spawn and maintain safe threads (such as mutex, semaphore)

• cirbuf.h — Defines a class that implements a circular buffer

Toolbox Architecture
Toolbox Architecture
The Data Acquisition Toolbox consists of these components:

• M-files

M-files contain MATLAB commands that allow you to connect to and
communicate with your hardware. For example, you use the analoginput
M-file to create a MATLAB object associated with your analog input
subsystem. The M-files are located in the MATLABROOT/toolbox/daq/daq
folder.

• The data acquisition engine

The data acquisition engine contains functions that handle data acquisition
objects and manage their properties. The engine also provides support for
buffering and for managing acquired and output data.

• Adaptors

An adaptor is a DLL that interacts directly with the vendor-supplied
hardware device driver. The adaptor communicates with the device driver
via the vendor’s API. Normally the API functions are contained in a DLL
that supplements the device driver.

The flow of information between toolbox components is shown below. The COM
interface exists between the data acquisition engine and the adaptor DLL.

Figure 1-1: Flow of Information Between Toolbox Components

M-files (MATLAB commands)

Data acquisition engine (MEX file)

Adaptor DLL

Vendor interface

Hardware

COM interface
1-9

1 Introduction

1-1
The relationship between the data acquisition engine and an adaptor DLL is
implemented as a Component Object Model (COM) interface. The
communication is always initiated by the engine when the data acquisition
object is first created.

Thus, you can apply a client-server architecture model to this interface with
the engine as a client and the adaptor as a server. However, when the data
acquisition object is initialized, the engine sends a pointer to its main interface
to the adaptor. This allows the adaptor to probe for all engine COM interfaces
and methods via the QueryInterface function. The adaptor itself obtains the
pointer to the engine class, based on the main interface. This enables it to call
the necessary methods from the engine and use them in the acquisition
process. This approach allows for version maintenance on both the engine and
the adaptor sides. Additionally, it enables you to create adaptors as EXE files
rather than DLL files, and provides for remote communication between the
engine and adaptors.

The COM interface between the engine and the adaptor is described in detail
in this document. To facilitate your understanding of these interfaces, the
adaptor source code is provided as part of the Adaptor Kit.

Since these interfaces are based on COM, the data types you use while writing
adaptors must conform to COM standards. Many of the data types found in C
are supported, such as long and double. Other data types, such as BSTR and
VARIANT, are also commonly used in COM-based applications. These data
types are documented in many texts and in Microsoft’s online documentation.
Wrapper classes such as variant_t and bstr_t, and the ATL counterparts
CComVariant and CComBSTR make using these data types much easier.
These classes are documented by Microsoft as well.
0

Using This Manual
Using This Manual
The Adaptor Kit User’s Guide provides instructions and information required
to implement an adaptor in C++. As such, it is not a conventional MATLAB
Toolbox User’s Guide, and you should not expect to find a layout similar to a
MATLAB Toolbox User’s Guide.

The layout of this document is intended to provide sufficient information for

• First-time adaptor implementors, who need to read all chapters in the guide
carefully, and might need to refer to the Appendices for additional
information on engine and adaptor kit interfaces and data structures.

• Experienced adaptor implementors, who need a checklist of things to do
when implementing an adaptor. These implementors would use the Adaptor
Kit as a reference guide rather than as a recipe of implementation steps.

In either case, you need to understand how the Adaptor Kit User’s Guide is laid
out, in order to make most effective use of the information in this Guide.

Chapter 1, “Introduction,” provides an overview of the Adaptor Kit, the Toolbox
architecture, and the Adaptor Kit files. You should read this chapter to gain an
insight into how the Adaptor fits into the Data Acquisition Toolbox
architecture.

Chapter 2 provides a tutorial that explains the relationship between a
MATLAB user’s interaction with the Data Acquisition Toolbox and the
adaptor. First-time users should read this document in order to understand
how and when the adaptor is called.

The main reference for all adaptor implementors should be Chapter 3,
“Step-by-Step Instructions for Adaptor Creation.” Both experienced and novice
adaptor implementors should use the step-by-step guide when implementing
new adaptors or modifying existing adaptors. The chapter is written to allow
for easy implementation guidelines, and does not contain all the information
required to implement a successful adaptor. Where relevant, information on
implementation details has been left for a later chapter, and referenced in
Chapter 3.

Chapter 4, “Working with Properties,” explains how to implement code that
allows you to query and modify adaptor properties. This chapter should be used
as an implementation reference for the steps listed in Chapter 3.
1-11

1 Introduction

1-1
Chapter 5, “Buffering Techniques,” explains how the engine manages buffering
of data for continuous acquisition tasks. You should only need the information
in this chapter if you plan on implementing hardware-clocked acquisition in
your adaptor.

Chapter 6, “Callbacks and Threading,” provides some implementation
techniques for handling callbacks from hardware device drivers in your
adaptor. This chapter, together with Chapter 5, forms the basis for
implementing hardware-clocked acquisition in your adaptor. For
software-clocked adaptors, the information is not required.

Finally, experienced adaptor implementors wanting to understand the basic
COM Interfaces defined by the Data Acquisition Toolbox and the Adaptor Kit
should refer to the Appendices, which contain references for the interfaces and
for structures defined by the engine.
2

A Basic View of Toolbox-Engine-Adaptor Relationships . . . 2-2

Example: an Analog Input Session 2-3

Example: an Analog Output Session 2-8

Example: a Digital I/O Session 2-10
2

Tutorial

Overview . 2-2

2 Tutorial

2-2
Overview
This chapter explains, by way of an example data acquisition session, how a
typical user interacts with the Data Acquisition Toolbox, and how those user
commands are handled by the engine and the adaptor. The examples include

• An analog input session

• An analog output session

• A digital I/O session

This chapter provides an understanding of how user commands are interpreted
by the adaptor. However, no actual C code is presented in this chapter; the
implementation details are deferred to Chapter 3, “Step-by-Step Instructions
for Adaptor Creation.”

A Basic View of Toolbox-Engine-Adaptor
Relationships
As discussed in “Toolbox Architecture” in Chapter 1, the Data Acquisition
Toolbox consists of M-files, the data acquisition engine, and adaptors. Each of
these components is used in a typical data acquisition session; although the
user only interfaces to the hardware through MATLAB code, the MATLAB
code uses the engine to create and manage the required data acquisition object,
and the engine uses the adaptor to control hardware and those properties’
changes that are deemed to be important to the adaptor. These relationships
are shown graphically below.

Adaptor Object

DAQ Engine

MATLAB

AI Object

Modify/Control
COM

AO Object DIO Object

Create

A
da

pt
or

Example: an Analog Input Session
Example: an Analog Input Session
A typical toolbox session using an analog input object is shown.

ai = analoginput('winsound');
set(ai,'SampleRate',11025)
set(ai,'Tag','WinsoundObject')
addchannel(ai,1);
set(ai.Channel,'InputRange',[-.5 .5])
start(ai)
waittilstop(ai, 5);
data = getdata(ai);
delete(ai.Channel(1))
delete(ai)

Each command is described below.

Creating an Analog Input Object
The following command creates an analog input object associated with a sound
card.

ai = analoginput('winsound');

The analoginput M-file calls the data acquisition engine to construct the
analoginput object. When the constructor is first called, the engine must
determine what COM object to create. It does this by enumerating all class IDs
of objects that implement CATID {6FE55F7B-AF1A-11D3-A536-
00902757EA8D} (MATLAB Data Acquisition Adaptor), and then asks for the
short name of that GUID. In this case, the engine matches the short name to
the winsound adaptor. The engine then constructs an mwAdaptor object and
calls the object’s OpenDevice method for creating the analog input object.

The adaptor’s OpenDevice method is responsible for creating a new device and
initializing it. Typically, this is done by creating a new COM object that
implements the appropriate interfaces. After creating the new object, the
engine interface can then be used to identify the characteristics of the current
driver or device to the MATLAB user. You can also create device-specific
properties at this time. The adaptor can also register an interest in some
properties by setting the User value of the property. This value serves two
purposes: Any value other than 0 causes the engine to call the SetProperty
2-3

2 Tutorial

2-4
method when the property is changed, and the value can be used in the
SetProperty method to identify the property being modified.

The Open method creates any device-specific properties and defines any
device-specific values for existing properties. For example, the winsound
adaptor has two device-specific properties: BitsPerSample and
StandardSampleRates. Both these properties are created with the
CreateProperty method of the IPropContainer interface. When the property
is created, a pointer to the IProp interface for the property just created is
returned that allows you to call IProp methods. The IProp methods allow you
to configure your property. For example, the IProp interface contains methods
that allow you to display the possible settings of the property, the default value
of the property, and the current value of the property.

Configuring the Sampling Rate
The following command configures the sound card to a sampling rate of 11.025
kHz.

set(ai,'SampleRate',11025)

The set M-file calls the data acquisition engine. In the Open method the
adaptor requested a notify on change for the SampleRate property, and so the
engine notifies the adaptor when you set the property to a new value. The data
acquisition engine calls the adaptor’s SetProperty method with two input
arguments. The first input argument is a pointer to the IProp interface for the
property being set. The second input argument is the value that the property
is being set to. Therefore, in this example, the first input argument is a pointer
to the SampleRate IProp interface, and the second input argument contains a
pointer to 11025.

From within the adaptor’s SetProperty method, you can determine which
property is being set by examining the user value passed into the function. This
value can be compared to the values for each property that you have registered
with the engine.

Configuring the Object Tag
The following command configures the analog input object’s Tag property to the
string WinsoundObject.

set(ai,'Tag','WinsoundObject');

Example: an Analog Input Session
The set M-file calls the data acquisition engine. The Tag property was not
registered by the adaptor. Therefore, when you configure the property, the
engine modifies the value and does not notify the adaptor of the change.

Adding Channels to the Analog Input Object
The following command adds one channel to the analog input object ai.

addchannel(ai,1);

The addchannel M-file calls the data acquisition engine. The engine then calls
the adaptor’s ChildChange method. This gives the adaptor the opportunity to
initialize the hardware and do any error checking for the channel that is added.

Configuring the Channel’s Input Range
The following command configures the channel’s InputRange property to
accept voltages between -5 and 5 volts.

set(ai.Channel,'InputRange',[-.5 .5]);

The set M-file calls the data acquisition engine. The engine then calls the
adaptor, because the InputRange property was registered with the engine
(within the adaptor's Open method). The data acquisition engine calls the
adaptor's SetChannelProperty method. SetChannelProperty takes four input
arguments. The first input argument is a pointer to the IProp interface for the
channel property being modified. The second input argument is a pointer to the
IPropContainer interface for the channel being modified. The third input
argument contains a pointer to the NESTABLEPROP structure, which is described
in Appendix C, “Engine Structures.” The last input argument contains the new
property value.

Note The InputRange property is typically a combination of the hardware
device’s input range and the gain for a channel. For example, a hardware
input range of +/- 5 V with four gain settings of 1, 2, 5, and 10 results in
possible InputRange values of [-5 5], [-2.5 2.5], [-1 1], and [-0.5 0.5].

Starting the Analog Input Object
The following command starts the analog input object.
2-5

2 Tutorial

2-6
start(ai);
waittilstop(ai, 5);

The start M-file calls the data acquisition engine. The engine then calls the
adaptor’s Start method.

The Start method is responsible for initializing any routines necessary for
acquiring data from the hardware. Because triggering is by default immediate,
the engine then calls the adaptor’s Trigger method, which starts the
acquisition. The adaptor must then run in the background using callbacks or a
separate thread. The buffers of data are transferred between the adaptor and
the data acquisition engine with the GetBuffer and PutBuffer methods of the
IDaqEngine interface. The adaptor uses the GetBuffer method to obtain an
empty buffer from the data acquisition engine. When the buffer is filled with
data acquired from the hardware, the adaptor returns the buffer to the data
acquisition engine with the PutBuffer method.

When the number of samples requested has been returned from the adaptor to
the data acquisition engine, the engine calls the adaptor's Stop method.

The waittilstop M-file waits until the specified object has stopped, or a
particular time has passed (in this case, 5 seconds). The engine knows that the
adaptor has stopped when it receives a Stop Event notification from the
adaptor.

Extracting Data from the Engine
The following command extracts all the data from the engine and stores it in
the MATLAB variable data.

data = getdata(ai);

The getdata M-file calls the data acquisition engine, which returns the data
buffered in the engine to the specified MATLAB variable. If the number of
samples requested by getdata is not available, the engine blocks until the
adaptor returns the number of samples requested, or errors if the time
specified by TimeOut elapses.

Deleting a Channel
The following command deletes the channel from the analog input object.

delete(ai.Channel(1))

Example: an Analog Input Session
The delete M-file calls the data acquisition engine, which in turn calls the
adaptor’s ChildChange method.

Deleting an Analog Input Object
The following command deletes the channel from the analog input object.

delete(ai)

The delete M-file calls the data acquisition engine, which calls the adaptor’s
destructor method. This should stop the device (call the Stop method), if the
device was running, and close the hardware.
2-7

2 Tutorial

2-8
Example: an Analog Output Session
A typical toolbox session using an analog output object is shown.

ao = analogoutput('winsound');
set(ao,'SampleRate',11025)
set(ao,'Tag','WinsoundObject')
addchannel(ao,1);
set(ao.Channel,'OutputRange',[-.5 .5])
data = sin(linspace(0,2*pi,8000));
putdata(ao,data')
start(ao)
waittilstop(ao, 2);
delete(ao.Channel(1))
delete(ao)

The analgoutput, set, and addchannel commands are not described here
because they are functionally identical to the analog input commands
described in “Example: an Analog Input Session” on page 2-3. The
sin(linspace()) command is not described because it is handled entirely
within MATLAB. All other commands are described below.

Queuing Data in the Engine
The following command queues data in the engine.

putdata(ao,data')

The putdata M-file calls the data acquisition engine, and the data is converted
to the native data type and stored within the engine for output to the hardware.

Starting the Analog Output Object
The following command starts the analog output object.

start(ao)

The start M-file calls the data acquisition engine, which in turn calls the
adaptor's Start method.

The Start method is responsible for initializing any routines necessary for
outputting data that has been queued in the data acquisition. It often primes
the output with data before the trigger function is called. The engine then calls
the Trigger function, at which point the hardware should be started. The

Example: an Analog Output Session
buffers of data are transferred between the adaptor and the data acquisition
engine with the GetBuffer and PutBuffer methods of the IDaqEngine
interface. The adaptor requests a buffer of data to be output from the data
acquisition engine with the GetBuffer method. When the data buffer has been
output to the hardware, the adaptor returns the empty buffer to the data
acquisition engine with the PutBuffer method.

For analog output objects, the adaptor must determine when the last buffer of
data is available for being output, call its own Stop method, and post a Stop
event to the object’s EventLog property. The last buffer can be detected with the
Flags field of the BUFFER_ST structure. The last buffer can also be detected if
the buffer obtained by the GetBuffer method of the IDaqEngine interface is
null. An event can be posted with the IDaqEngine's DaqEvent method.

Deleting a Channel
The following command deletes the channel from the analog output object.

delete(ao.Channel(1))

The delete M-file function calls the data acquisition engine. The engine then
calls the adaptor’s ChildChange method. The adaptor configures the hardware
and performs any necessary error checking for the channel that is being
deleted.

Deleting an Analog Output Object
The following command deletes the analog output object.

delete(ao)

The delete M-file calls the data acquisition engine. The engine then calls the
adaptor’s destructor method. This should stop the device (call the Stop method)
and close the hardware.
2-9

2 Tutorial

2-1
Example: a Digital I/O Session
A typical toolbox session using a digital I/O object is shown.

dio = digitalio('nidaq',1);
lin = addline(dio,0:3,'in');
lout = addline(dio,4:7,'out');
p = addline(dio,0:7,1,'in');
data = getvalue(lin);
putvalue(lout,5)
data2 = getvalue(dio);
delete(dio)

Each command is described below.

Creating a Digital I/O Object
The following command creates the DIO object dio associated with a National
Instruments board.

dio = digitalio('nidaq',1);

A digital I/O (DIO) device need not implement all the interfaces that are
required for an analog input or analog output device. When the device is
opened, it must fill in the portdirections, portids, portlineconfig, and
portlinemask properties with the correct values. Given these values, the
engine maintains the line information and generates the correct calls to
SetPortDirection, ReadValues, and WriteValues. The standard property and
child (line) property methods are supported. However, the adaptors
implemented so far have not needed to use them.

The object should initialize its properties to the correct values before returning.
For a DIO object, the daqhwinfo property structure must initialize values for
portdirections, portids, portlineconfig, and portlinemasks.

Adding Lines to the Digital I/O Object
The following command adds four input lines from the default port (port 0) to
the DIO object dio.

lin = addline(dio,0:3,'in');

The addline command works the same as the addchannel command for AI and
AO objects in that the adaptor’s ChildChange method is called. However, most
0

Example: a Digital I/O Session
adaptors need not implement ChildChange, because typically no adaptor
actions are necessary when adding or removing lines.

The following command adds four output lines to the DIO object dio.

lout = addline(dio,4:7,'out');

After the lines are added, a call to SetPortDirection(0,0xf0) is made to set
the port direction to output.

The following command demonstrates that you can also add lines in reverse
order.

p = addline(dio,7:-1:0,1,'in');

Reading Line Values
The following command reads the values from lines 0 to 3 of port 0 and stores
the values in the MATLAB variable data.

data = getvalue(lin);

The engine issues the command ReadValues(1,PortList,Data) to the device,
which must then return the values from the specified ports. The adaptor does
not keep track of exactly what lines have been added, and returns all line
values in Data.

Writing Line Values
The following command writes the value 5 to lines 4 through 7 (the four most
significant bits) of port 0.

putvalue(lout,5);

The write is performed by calling WriteValues(1,PortList,Data,Mask)
where Portlist, Data, and Mask are pointers to an array. Portlist points to 0,
Data points to 0x50, and Mask points to 0xf0.

The following three commands illustrate alternative ways to write the value 5
to port 0:

putvalue(lout,[1,0,1,0])

putvalue(dio.lines(8:-1:5),10);

putvalue(lout(4:-1:1),[0,1,0,1])
2-11

2 Tutorial

2-1
Reading Line Values
The following command reads the values from all currently configured lines:

data2 = getvalue(dio);

The read is performed by calling ReadValues(2,PortList,Data).

Deleting a Digital I/O Object
The following command deletes the channel from the digital I/O object:

delete(dio);

It is up to the implementation to decide what state any output lines are left in.
The engine releases its reference to the mwDevice object and then releases its
reference to the mwAdaptor object.

Note The engine implements a pseudo line system and caches the values
written to output lines. It also takes care of reordering the lines (and data) for
the user.
2

Toolbox Adaptors 3-3

About the Demo Adaptor Software 3-7

Stage 1 Select Supported Features 3-9

Stage 2 Create the Adaptor Project and Adaptor Class 3-12

Stage 3 Implement the Analog Input Subsystem 3-18

Stage 4 Implement the Analog Output Subsystem 3-46

Stage 5 Implement the Digital I/O Subsystem 3-54
3

Step-by-Step Instructions
for Adaptor Creation

Overview: Building the Adaptor 3-2

3 Step-by-Step Instructions for Adaptor Creation

3-2
Overview: Building the Adaptor
This chapter provides step-by-step instructions for building an adaptor for your
hardware. Starting with the demo adaptor provided with the Data Acquisition
Toolbox, you can develop a complete adaptor, implementing all the
functionality available in the Data Acquisition Toolbox for your hardware,
using these instructions.

In this chapter, you learn how to build the adaptor by following these stages:

1 Choose the features of the Data Acquisition Toolbox the adaptor will
implement.

2 Create the Adaptor project and Adaptor class, based on the demo adaptor
supplied by The MathWorks.

3 Implement the Analog Input object code (if required).

4 Implement the Analog Output object code (if required).

5 Implement the Digital I/O object code (if required).

For each of the stages, the specific actions required to complete that stage are
discussed in this chapter. The stages have been designed so that testing can
take place often, and changes are typically restricted to a few files and methods
within one class.

Note Although this chapter discusses the steps required to implement each
stage, details of how to interact with properties, deal with buffers, and handle
event messaging are documented in later chapters. Refer to those chapters as
necessary.

The stages of development rely heavily on the demo adaptor source code
provided with the Adaptor Kit. In many instances, this document also refers to
existing adaptors supplied with the Data Acquisition Toolbox. Refer to the code
for these adaptors where necessary.

Toolbox Adaptors
Toolbox Adaptors
The technologies used in the adaptors shipped with the Data Acquisition
Toolbox have been presented in this document as approaches for implementing
your own adaptor. Each adaptor provides a unique combination of the
implementation approaches presented in this manual. The following sections
explain how each adaptor has been implemented. The code for each adaptor is
in a subdirectory of the Data Acquisition Toolbox. You can find the source code
in the $MATLABROOT\toolbox\daq\daq\src directory.

The winsound Adaptor
The winsound adaptor is used to communicate with Windows-compatible sound
cards. The adaptor uses the Windows multimedia drivers and buffers acquired
data using multibuffering with direct callback threads.

This adaptor is the most basic of all the adaptors. However, because of the
power of the Windows multimedia device interface, it uses an efficient
acquisition method: This adaptor uses a linked list of buffers to acquire or
output data. The multimedia device is capable of filling (or emptying) these
buffers in the order that they are passed to the device. A thread is created to
feed buffers to the device from the engine, and to take the filled buffers from
the device and return them to the engine. The thread is paced with an event
generated by the device driver each time a buffer is filled. This driver also
supports variable data types.

Note This adaptor was written prior to complete implementation of the
current Adaptor Kit. Although the concepts used in the adaptor are similar to
those presented here, you will find that some of the actual implementation of
code is more low-level than the ideas presented in this document.

The cbi Adaptor
The cbi adaptor is used to communicate with ComputerBoards devices
(ComputerBoards are now called Measurement Computing, but the adaptor is
referred to in this document as the ComputerBoards adaptor). The adaptor
uses the Universal Library drivers, and buffers acquired data using circular
buffers with timer callbacks. It also implements software clocking.
3-3

3 Step-by-Step Instructions for Adaptor Creation

3-4
The ComputerBoards adaptor has two unique features: First, because the
Universal Library does not support callbacks, this adaptor uses a timer to poll
the current acquisition. It does this by using the Windows multimedia timer
callback. The current transfer location is obtained from the Universal Library,
and the appropriate amount of data is then copied into or out of the circular
buffer. One disadvantage of this method is that there is no hardware guarantee
or protection for an overrun or an underrun condition. The adaptor tries to pick
a buffer size and a timer callback rate such that an overrun is unlikely, but
there is still the possibility that data can be lost.

The second unique feature of this adaptor is the support for software clocking.
Because some ComputerBoards devices do not have an onboard clock, this
adaptor implements a software clock based on the Windows multimedia timer.

Note The ComputerBoards adaptor makes extensive use of many of the
Adaptor Kit macros used in this document. However, the ComputerBoards
adaptor does not implement the adaptor object separately from the analog
input class, so you should not use the entire adaptor as a template for creating
your own.

The nidaq Adaptor
The nidaq adaptor is used to communicate with National Instruments devices.
The adaptor uses the NI-DAQ driver, and buffers acquired data using circular
buffers with direct callbacks.

The NI-DAQ adaptor is one of the more extensive adaptors because of its
implementation of advanced triggering modes and the number of hardware
devices supported. It works by acquiring data to or from a circular buffer using
NI-DAQ’s callback and copy functions. A circular buffer is used because it is the
buffering mode supported by the NI-DAQ software. Many advanced triggering
modes are also supported by this adaptor. When the number of samples is
known and is sufficiently small, a burst acquisition is performed instead of
using continuous acquisition.

Toolbox Adaptors
Note This adaptor was written prior to complete implementation of the
current Adaptor Kit. Although the concepts used in the adaptor are similar to
those presented here, you will find that some of the actual implementation of
code is more low-level than the ideas presented in this document.

The hpe1432 Adaptor
You use the hpe1432 adaptor to communicate with Agilent Technologies
E1432/33/34 devices. The adaptor uses the VXIplug&play driver, and buffers
acquired data using ping-pong buffers with callbacks.

For input data, the adaptor uses an unknown buffering method that is internal
to the VXIplug&play driver, and a callback to notify the adaptor when data is
available. In the callback function, a buffer of data is retrieved from the driver
and returned to the engine. For output data, the adaptor uses two buffers and
a vendor-supplied callback to send the data. The buffer size is defined by the
driver to have a maximum of 4096 values. Therefore, to simplify the copy
process, the adaptor limits the engine to this maximum buffer size. It also
supports more than 16 bit data output.

Note This adaptor was written prior to complete implementation of the
current Adaptor Kit. Although the concepts used in the adaptor are similar to
those presented here, you will find that some of the actual implementation of
code is more low-level than the ideas presented in this document.

The keithley Adaptor
You use the keithley adaptor to communicate with Keithley Instruments
devices. The adaptor uses the DriverLINX set of drivers, and implements direct
engine-driver buffer transfers using window messaging.

The Keithley adaptor supports a wide range of Keithley Instruments boards.
Because each board series uses a different device driver, the adaptor opens all
available DriverLINX drivers at initialization, and closes them when the
adaptor is destroyed. The adaptor can switch between software-clocked and
hardware-clocked acquisition as required.
3-5

3 Step-by-Step Instructions for Adaptor Creation

3-6
A unique feature of the Keithley adaptor is the implementation of Window
message handling to monitor task progress. The adaptor uses a single message
window for all DriverLINX messaging, passing the message to the appropriate
subsystem as required. However, due to the implementation of the DriverLINX
drivers, the message window thread has to open all DriverLINX drivers in
order to receive any messages from those DLLs. Hence, two instances of
DriverLINX are open at any one time per driver installed on the machine.

The direct engine-adaptor buffering places some limitations on the minimum
size of the engine buffers. This is not enforced, but is rather communicated to
the user through warning messages when appropriate.

Note The Keithley adaptor has been implemented based solely on the
current Adaptor Kit ideas. You should refer to the Keithley adaptor for code
examples where possible.

About the Demo Adaptor Software
About the Demo Adaptor Software
The demo adaptor does not communicate with any actual hardware. Instead it
simulates data acquisition in order to demonstrate the basic functionality
common to most adaptors.

Features
The demo adaptor supports these features:

• Buffered acquisition

• Manual, software, and auto triggering

• Single-sample acquisition

• Saving (retrieving) collected data to (from) a MATLAB internal array

Limitations
The demo adaptor has these limitations:

• It works only with simulated data. The data is stored in the buffer
immediately after you open the device. This same buffer is reused whenever
data is required.

• It only supports software clocking. Note that the maximum software-clocked
sampling rate is 500 samples per second. Therefore, any adaptor you build
that uses software clocking includes this limitation. To achieve higher
sampling rates, you must use your hardware’s onboard timer. However,
supporting an onboard timer requires an entirely different software design,
which is described later in this guide.

Modifying the Demo Adaptor
Modification of the demo adaptor takes place in each of the stages defined in
this chapter. Although you could simply modify the code from the demo adaptor
and create an adaptor named “demo” by building that modified adaptor code,
this chapter leads you through the process of creating your own project and
importing components of the demo adaptor into that project one at a time. In
this way, you can test modifications and restrict problems to a single file in the
project, which makes implementation quicker and easier to deal with.

The demo adaptor code contains many
3-7

3 Step-by-Step Instructions for Adaptor Creation

3-8
// TODO
...
// END TODO

comment segments. These segments of comment code should be used in
conjunction with the steps outlined in this chapter, in order to produce a
successful adaptor with minimal trouble.

About the Demo Adaptor Software
Stage 1 Select Supported Features
The first stage of writing your adaptor is deciding which features of the Data
Acquisition Toolbox to support. Your decisions should be based on

• Hardware capabilities: Can the hardware provide the specified feature?

• Driver knowledge: Does the software driver support the required
programming requirements?

• Available time: Some aspects of implementation can be completed relatively
quickly, while others require more programming and testing time.

In general, these decisions are driven by the first two points, and only rarely
by the last.

The following questions provide an implementation roadmap for you to follow.
The questions provide a hierarchy of implementation possibilities based on
implementation complexity; as the list continues (for each subsystem) the
implementation becomes more complex. Each successive point is also inclusive:
to implement that point requires implementation of each previous point.

1 Will the adaptor support analog input?

a Single-value transfers only?

b Buffered transfers (logging to memory and/or disk) using software
clocking?

c Hardware-clocked buffered transfers?

d Hardware triggering and/or gated acquisition?

2 Will the adaptor support analog output?

a Single-value transfers only?

b Buffered transfers (logging to memory and/or disk) using software
clocking?

c Hardware-clocked buffered transfers?

d Hardware triggering and/or gated acquisition?

3 Will the adaptor support digital I/O?

a Will any digital ports be configurable for write/read?
3-9

3 Step-by-Step Instructions for Adaptor Creation

3-1
b Will any digital lines be configurable for write/read?

Based on the questions posed above, a roadmap to implementation can be
identified. This roadmap is presented in the following table as methods that
must be implemented for each of the steps defined above.

Table 3-1: Classes and Methods to Be Implemented in the Adaptor

Question Class/Methods to Implement

1) Analog Input AnalogInput class (derived from ImwDevice and ImwInput)
Open, SetDaqHwInfo methods.

1a) Single-value A/D GetSingleValue and/or GetSingleValues methods.

1b) Software-clocked
acquisition

No additional methods are required, but the adaptor must call
EnableSwClocking to set up correct sample rates.

1c) Hardware-clocked
acquisition

Start, Trigger, Stop methods, and probably SetProperty,
ChildChange, and SetChannelProperty methods, as well as a message
handler.

1d) Hardware
triggering or gated
acquisition

Modify Start, Trigger, and Stop methods, as well as property change
methods.

2) Analog Output AnalogOutput class (derived from ImwDevice and ImwOutput)
Open, SetDaqHwInfo methods.

2a) Single-value D/A PutSingleValue and/or PutSingleValues methods.

2b) Software-clocked
transfer

No additional methods are required, but the adaptor must call
EnableSwClocking to set up correct sample rates.

2c) Hardware-clocked
transfer

Start, Trigger, Stop methods, and probably SetProperty,
ChildChange, and SetChannelProperty methods; message handler.

2d) Hardware
triggering or gated
transfers

Modify Start, Trigger, and Stop methods, as well as property change
methods.
0

About the Demo Adaptor Software
Stages 2 through 4 discuss how to implement each of these methods.

By the end of Stage 1, you will have a roadmap defining how you will
implement your adaptor. Refer also to Appendix A, “Adaptor Kit Interface
Reference,” and Appendix B, “Engine Interface Reference,” for information on
the methods that all adaptors should implement (and which methods are
implemented in the Adaptor Kit).

Limitations of Software-Clocked Adaptors
One of the most important implementation issues is whether to support
hardware clocking in your adaptor. As long as you use the Adaptor Kit code,
software clocking is already implemented for your adaptor, and requires
minimal effort, as outlined in the section above. However, software clocking
has some limitations which might be too severe for your application:

• The maximum sample rate for any acquisition task is 500 Hz, regardless of
the board’s published sampling rate and your computer’s processor speed.

• You cannot use any hardware triggering without rewriting substantial
portions of the adaptor code.

If you are able to achieve your desired objective within these limitations, then
you should not use anything other than software clocking. A complete adaptor,
however, should use the full features of the hardware for which the adaptor has
been written, and should implement hardware clocking.

3) Digital I/O DigitalIO class (derived from ImwDevice and ImwDIO)
Open, SetDaqHwInfo, WriteValues, ReadValues methods.

3a) Port-configurable
I/O

SetPortDirection method, trapping DirectionValue of 0 (Input) or
0xff (Output).

3b) Line-configurable
I/O

SetPortDirection method, with variable DirectionValue settings.

Table 3-1: Classes and Methods to Be Implemented in the Adaptor (Continued)

Question Class/Methods to Implement
3-11

3 Step-by-Step Instructions for Adaptor Creation

3-1
Stage 2 Create the Adaptor Project and Adaptor Class
Once you have selected the required implementation details, you can create the
adaptor project. Use of a suitable compiler and IDE is required for this task.
This chapter assumes the use of Microsoft Visual Studio 6, Service Pack 4.

Although you are starting a new Microsoft Visual Studio project, you will make
extensive use of the demo adaptor code shipped with the Adaptor Kit by
importing that code into your project and modifying it. The benefit of starting
a new project is that modifications to the existing demo adaptor code are more
manageable. Adding the demo adaptor code initializes all Data Acquisition
Toolbox Engine interfaces, and creates shell classes and methods for
implementation of the custom-written adaptor.

The following sections describe how to implement this stage by completing the
following steps:

1 Choose a suitable name for your adaptor.

2 Create the Microsoft Visual Studio project.

3 Add the demo adaptor code to that project (including renaming the demo
files).

4 Test the adaptor with MATLAB.

In Stages 3 to 5, you will implement each of the subsystems of the adaptor.

Step 2.1 Adaptor and Project Naming
Before creating the adaptor, you should select a suitable name. In many cases,
the name would be the name of the data acquisition board manufacturer or
model. For example, if you are creating a board manufactured by “XYZ
Instruments” a suitable name is “xyz”. The name should not begin with
numbers, and should be sufficiently unique and representative of the
capabilities of the adaptor (if you are writing for a particular board, say the
“ad123”, you should name your adaptor after that board, i.e., “xyzad123”).

You must use all lowercase for the adaptor name, to conform to conventions
used on existing adaptors.

This adaptor kit provides examples based on a chosen adaptor name of “xyz”.
2

About the Demo Adaptor Software
Note Do not use the word “adaptor” in your project name, as the project
name is used extensively in the COM object naming! Otherwise a user would
have to create an adaptor by referring to it as the “xyzadaptor” instead of just
by the board name, “xyz”.

Once you have named the adaptor, you can create the adaptor project by
starting a new project using the “ATL Com AppWizard”. You should not need
to use MFC, as all interaction with the adaptor takes place through MATLAB
and not other windows (the only exception is when you are creating adaptors
that use MFC, for example, the winsound adaptor).

All adaptors created to date are in-process servers. For the AppWizard, this
means selecting “Dynamic Link Library” as the server type. Use of out of
process servers has not been tested, and is likely to be more difficult, although
not impossible.

The created project forms the shell of the adaptor.

Step 2.2 Add Include, Link, and MIDL Directories to
Your Project
To successfully compile the adaptor code, you must add the
$MATLAB\Toolbox\daq\daqadaptor\AdaptorKit directory to the following
include paths ($MATLAB refers to the directory in which MATLAB is installed):

• To the “Additional include directories” option of the C/C++ Preprocessor
definitions panel.

• To the “Additional resource include directories” option of the Resources
panel.

• To the “Additional include directories” option of the MIDL panel.

Next you must add the Adaptorkit.cpp file to your project. You also need to
modify the StdAFX.h file to include the adaptor kit header file adaptorkit.h.

You need to enable exception handling in your project. Select Project Settings
and select “All Configurations”. In the C/C++ tab, select “C/C++ Language” and
select the Enable exception handling box.
3-13

3 Step-by-Step Instructions for Adaptor Creation

3-1
Step 2.3 Define Adaptor Classes in the IDL File
The IDL file contains a definition of all COM interfaces defined in the project.
In this stage, you add the adaptor interfaces to the project, and the IDL file.

You should complete the following tasks in this stage (consult the demo
adaptor IDL file demo.idl for more information):

• Add a line to import the daqmex.idl file.

• Copy the implementation of the demoadapt class into your IDL file. The
specific lines to copy are given below:

[
uuid(CE932327-3BD9-11D4-A584-00902757EA8D),
helpstring("demoadapt Class")

]
coclass demoadapt
{

[default] interface ImwAdaptor;
};

Note You must change the UUID by running GUIDgen to create a new
UUID, and you must change the references to “demo” to the name of your
adaptor.

Note that this definition must appear within the definition of the type library.

Step 2.4 Add the Demo Adaptor Class Code
Copy the files demoadapt.h and demoadapt.cpp into your project directory, and
rename them by replacing “demo” with your adaptor name. The best way to do
this is to perform a global search and replace on both files, replacing “demo”
with the name of your adaptor.

You must remove or comment out some portions of the adaptor code in order to
test the adaptor in the next step.

• Remove the #include lines that import the Analog Input and Analog Output
header files into your adaptor code. You will add those in later stages.

• Comment out the blocks of text surrounded by
4

About the Demo Adaptor Software
//TO_DO
...
//END TO_DO

code segments in the adaptor’s OpenDevice method. You will require that
code in later stages, and you do not actually create a device until that stage.

Make the following changes to the main project file (xyz.cpp in this example):

• Add a #include for the adaptor header in the main project.

• You also need to add the adaptor definition to the OBJECT MAP in the main
project file. As an example, the following entry would be made for the
adaptor named “xyz”:

BEGIN_OBJECT_MAP(ObjectMap)
OBJECT_ENTRY(CLSID_xyzadapt, Cxyzadapt)

END_OBJECT_MAP()

The class ID of your adaptor is generated automatically by the MIDL
compiler.

Building and Testing the Demo Adaptor
You should now be able to build and test your demo adaptor, using the Debug
settings. Once the adaptor has successfully built, you should be able to launch
MATLAB and register and query the adaptor using the following MATLAB
code:

daqregister <PathToProject>\Debug\<adaptorname>.dll
daqhwinfo <adaptorname>

where <PathToProject> is the full path to your adaptor project and
<adaptorname> is the name of your adaptor. You should get back fictitious
results similar to the following:

» daqhwinfo xyz
ans =
 AdaptorDllName: 'c:\xyzadaptor\xyz.dll'
 AdaptorDllVersion: '1, 0, 0, 1'
 AdaptorName: 'xyz'
 BoardNames: {'xyz Board 0' 'xyz Board 1'}
 InstalledBoardIds: {'0' '1'}
 ObjectConstructorName: {2x3 cell}
3-15

3 Step-by-Step Instructions for Adaptor Creation

3-1
If this is successful, you are ready to implement the next step of the adaptor. If
the results are not similar, or if you get an error message, you need to check
that all steps outlined previously have been carried out.

Step 2.5 Modify the Adaptor Class AdaptorInfo()
Method
In Step 2.3, the adaptor reported fictitious board information. The previous
step simply confirmed that the adaptor was compiling correctly, and
registering as a valid data acquisition adaptor object. In the final step of Stage
2 you should implement code that checks the installed hardware on the system
by modifying the AdaptorInfo method of the adaptor class to provide
information about the installed hardware systems supported by the adaptor.
Typically, this would take the form of querying a device driver for any board
information that it can find, from the registry or other means.

For an example of how AdaptorInfo is implemented, consult the Keithley or
ComputerBoards adaptors.

Note The AdaptorInfo method makes extensive use of SafeArrays to pass
information back to MATLAB. See “Passing Arrays to MATLAB Using Safe
Arrays” in Chapter 4 for some ideas on how to do this in your adaptor.

The objective of this step is to make the information reported by a call to

daqhwinfo <adaptorname>

return the correct information for installed boards. For example, a call to the
Keithley adaptor on a machine with four hardware devices produces the
following results:

>> d=daqhwinfo('keithley')
d =
 AdaptorDllName: [1x58 char]
 AdaptorDllVersion: 'Version 1.1 (R12.1+) 23-Aug-2001'
 AdaptorName: 'keithley'
 BoardNames: {'KPCI-1801HC' 'KPCI-3110' 'KPCI-3108'
'KPCI-PIO96'}
 InstalledBoardIds: {'0' '5' '1' '2'}
 ObjectConstructorName: {4x3 cell}
6

About the Demo Adaptor Software
Typically device drivers provide some mechanism for differentiating between
multiple hardware devices. The Data Acquisition Toolbox assumes that boards
are referenced by a unique integer board identifier, listed as the
InstalledBoardIds field from the result of the daqhwinfo call. If the device
driver for your adaptor does not implement this system, you should enforce a
board identifier on each unique board found by the device drivers, using an
appropriate convention. In the example above, four Keithley Instruments
boards have been installed on the machine, and their board IDs are 0, 5, 1, and
2, respectively.

The ObjectConstructorName field returned by the daqhwinfo call lists the
object constructor code that can be used to create each of the Analog Input,
Analog Output, and Digital I/O subsystems (the columns of the cell array) for
each board (the rows of the cell array). If your adaptor is not implementing any
of the subsystems, you should remove the constructor string for that particular
subsystem. Similarly, if some boards implement a system while others do not,
you should leave the unsupported subsystem columns empty for that row of the
cell array.
3-17

3 Step-by-Step Instructions for Adaptor Creation

3-1
Stage 3 Implement the Analog Input Subsystem
Although all subsystems of an adaptor should be considered equally important,
the most commonly implemented subsystem is analog input (since most users
of the Data Acquisition Toolbox require measurement of real-world signals).
The Adaptor Kit therefore implements the analog input subsystem as the first
subsystem of the adaptor. This stage presents a significant discussion of the
techniques used in developing the adaptor’s subsystems; the steps required to
implement the Analog Output and Digital I/O subsystems are similar. Stages
4 and 5 therefore draw heavily on material discussed in this stage.

Implementation of the Analog Input subsystem takes place in the following
steps:

1 Select the default values, ranges, and other characteristics of the analog
input subsystem properties.

2 Create the Analog Input COM interface and class definitions in the IDL file,
and incorporate the demo adaptor analog input implementation in your
project.

3 Modify the OpenDevice method of the adaptor class to create the required
subsystem when requested.

4 Modify the Open and SetDaqHwInfo methods of the Analog Input class to
handle device initialization, create custom properties, and set defaults and
ranges for all properties.

5 Implement the SetProperty and SetChannelProperty methods of the
Analog Input class to handle property changes.

6 If necessary, overload the ChildChange method of the Analog Input class to
handle channel addition and removal.

7 Implement the GetSingleValue method if software clocking is to be used.

8 Implement the GetSingleValues method if the device driver supports easy
single acquisition from multiple channels.
8

About the Demo Adaptor Software
9 Implement the Start, Trigger, and Stop methods for buffered acquisition.
Typically, this step involves writing buffering routines and message
handlers, and might require multithreading of the adaptor.

Each of these steps is discussed in detail in the following sections.

Note You should use the answers to the questions posed in Stage 1 to decide
which of the preceding steps you will implement in your adaptor.

Step 3.1 Select Property Values, Ranges, and
Defaults for Analog Input
In order to control the behavior of a task (such as duration and volume of
acquisition, type of triggering, clocking, and event callbacks) the MATLAB
user modifies the properties of the Data Acquisition Toolbox analoginput
object representing the data acquisition hardware he/she is using. The adaptor
must use the property values during acquisition tasks to control driver
settings, return messages, and start and stop acquisition. The adaptor must
also provide the data acquisition engine with appropriate properties, ranges,
and default values for the specific hardware referenced by the adaptor.
Successfully creating an adaptor therefore requires careful thought about the
existing common Analog Input subsystem properties, and the addition of
adaptor-specific properties where appropriate.

For both common and adaptor-specific properties, the adaptor might need to
control default values of a property in response to user changes in any
associated properties (for example, when the user changes the
ChannelSkewMode property, the range for the ChannelSkew property needs to
change to reflect the new mode). The first step in building any subsystem is to
plan these default values and ranges and decide on any additional properties
that are required in order to describe the hardware completely. For example,
the Keithley adaptor implements stop triggers using various additional
properties such as StopTriggerType, StopTriggerChannel, etc.

Typically, this step consists of compiling a propinfo table of all common
properties for the particular subsystem, and filling in the following
information:

• Type: The MATLAB data type (one of double or string)
3-19

3 Step-by-Step Instructions for Adaptor Creation

3-2
• Constraint: The constraint on the property. Typically, this is Bounded, if the
property lies within a defined range, Enum if the property is one of an
enumerated list of available values, or None if the property can take on any
value.

• Constraint Value: The limits for a bounded constraint, or the list of
possible values for an enumerated list.

• Default Value: The value of the property when the object is first created. If
this might change, indicate all possible values with a note.

• Read Only: A flag indicating whether the property can be changed by the
user.

• Read Only Running: A flag indicating that the property cannot change
while an acquisition task is running.

• Device Specific: If the property is specific to the particular adaptor or is
defined by the engine.

• Attach: Whether the property is to be attached to (for information on
attaching to properties, see “Attaching to a Property” in Chapter 4).

• Notes: Any particular note about the property, including the source of the
default values (for example, the driver, or an INI file), how the property
might change based on other properties, and any additional implementation
information.

The propinfo table should reflect the state of the desired output from a call to
the propinfo method of the analoginput object. Thus, when you run

propinfo(analoginput(<adaptor>))

the result should be the data presented in the propinfo table. The output of
the MATLAB code given above provides a test to confirm that these properties
have been created and initialized successfully.

The table should include only those properties that are directly related to the
device hardware, and should not include properties that are used for logging to
disk, function callbacks, event information, or internal housekeeping.

For a complete list of properties supported by the adaptor, consult the Data
Acquisition Toolbox User’s Guide

A direct consequence of producing this table is discovering which properties
your adaptor will have to monitor closely. Monitoring of a property involves
registering that property with the data acquisition engine, effectively notifying
0

About the Demo Adaptor Software
the engine that the adaptor has a particular interest in being notified
whenever the user changes that property. This process, called attaching to the
property, allows methods within the adaptor to be called whenever that
property changes. Consequently, the adaptor would be able to change other
property enumerated lists, or perform additional checks on a selection of
properties to ensure that the subsystem does not perform illegal operations
when an acquisition is started. For more information on attaching to
properties, see “Attaching to a Property” in Chapter 4.

A sample propinfo table is presented in Table 3-2, showing only two properties
from an adaptor.

Table 3-2: Sample of Propinfo Table for Analog Input Object

Property/Field Value

ChannelSkew

Type Double

Constraint fixed

Constraint Value 5e-6 for Minimum
1/SampleRate for Equisample

Default 5e-6 if Minimum supported, else 1/1000.

ReadOnly 1

ReadOnly Running 1

Device Specific 0

Attach 0

Note Check driver for burst mode support.

ChannelSkewMode

Type String

Constraint Enum
3-21

3 Step-by-Step Instructions for Adaptor Creation

3-2
The outcome of Step 3.1 is a document that forms the blueprint for the
implementation of properties in later steps of this stage.

Step 3.2 Add the Demo Analog Input Code to Your
Project
When the IDL file was created, only the adaptor component was included. The
IDL file must expose the Analog Input interface to the engine, so that the
engine can access the methods in the analog input implementation.

Both the interface and the class need to be defined in the IDL file. Specify the
interface prior to the specification of the Adaptor Type Library, so that the
library can use the new interface in the Analog Input class. The following tasks
should be completed in this stage:

• Add the interface definition prior to the type library definition. The Analog
Input interface should inherit from the IDispatch interface (although the
IDispatch interface is not currently implemented, the engine assumes that
the Analog Input interface inherits from IDispatch). Sample code for the
XYZ adaptor follows:
[

object,
uuid(E721C893-C230-4eae-9F78-B33E30F74B4E),

Constraint Value Minimum
Equisample

Default Minimum

ReadOnly 0

ReadOnly Running 1

Device Specific 0

Attach 1

Note Mimimum only if ADBURST is supported. Change
sets ChannelSkew.

Table 3-2: Sample of Propinfo Table for Analog Input Object (Continued)

Property/Field Value
2

About the Demo Adaptor Software
dual,
helpstring("IxyzAin Interface"),
pointer_default(unique)

]
interface IxyzAin : IDispatch
{};

• Be sure to change the UUID, using GUIDgen, so that your adaptor has a
unique ID.

• Add the Analog Input class to the type library (if using the following code, be
sure to change the UUID of your class using GUIDGen):

// Define the xyzAin class:
[

uuid(83D8B96C-FE9A-46c7-AAB9-6B3C67FDE863),
helpstring("xyzAin Class")

]
coclass xyzAin
{

[default] interface IxyzAin;
interface ImwDevice;
interface ImwInput;

};

The Analog Input class should inherit the ImwDevice and ImwInput
interfaces, and your Analog Input interface defined in the adaptor.

• Copy the Analog Input files from the demo adaptor, renaming the files
appropriately. In order to facilitate the search and replace operation
described below, you should simply replace the word “demo” in the filenames
with your adaptor name. For example, the file demoain.cpp would become
xyzain.cpp.

• Search for all instances of the word “demo” and replace that with your
adaptor name.

Note Remember to do this with both the .cpp and the .h files. Unfortunately,
the current Microsoft Visual C IDE does not support search and replace across
multiple files.
3-23

3 Step-by-Step Instructions for Adaptor Creation

3-2
In the next step, you test the changes made in this step by providing sufficient
code to enable the creation of the your analog input object as a duplicate of the
demo adaptor with a new name.

Step 3.3 Modify the OpenDevice Method of the
Adaptor Class
In this step of the implementation of the analog input object, you ensure that
the renamed demo adaptor still works in MATLAB.

• Uncomment the analog input construction statements in the OpenDevice
method of the Adaptor class. Be sure to include the Analog Input class
header file in the adaptor class implementation file.

• Compile the project, and you should be able to launch MATLAB and create
an analog input object for your adaptor:
ai = analoginput('xyz');

If the compilation fails, you should ensure that all header files have been
created, and that your analog input class name is consistent throughout the
project. Also ensure that all the steps from the previous stage have been
implemented as well.

Your adaptor should now contain a complete analog input object, which
implements software clocking on a fake acquisition channel (the acquisition
returns a sine wave from an internal function, and not from any hardware
device). In future stages of the analog input implementation, you will
progressively implement hardware acquisition tasks. The first of these stages
is to ensure that the adaptor’s properties are initialized correctly, possibly from
hardware device detection.

Step 3.4 Modify the Analog Input Open and
SetDaqHwInfo Methods
The Open method is called by the Adaptor class OpenDevice method to create
an analog input subsystem for a particular device. The Open method is
responsible for checking that the required device has the requested subsystem,
initializing the subsystem hardware (if necessary), and configuring the
subsystem properties correctly.

You create analog input subsystems by specifying two parameters: the adaptor
name and the device ID. Your adaptor code needs to use the device ID to
4

About the Demo Adaptor Software
provide the device driver with a specific reference to the desired hardware
device. The device ID is passed as the second parameter of the Open method.
The first parameter is a pointer to the Engine interface, and this should also be
stored by the adaptor to gain access to engine methods.

The Open method typically also calls the SetDaqHwInfo method, to define
hardware and driver information for the subsystem.

The demo adaptor provides a sample Open method that illustrates the basic
ideas of opening an analog input subsystem:

• The base engine’s Open method is called. This creates a link to the engine and
defines a variable _engine containing a pointer to the engine’s interface
methods.

• The ClockSource and InputType properties are initialized as remote
properties (for a discussion of properties, see Chapter 4, “Working with
Properties”).

• The ClockSource and InputType properties are modified to reflect the demo
adaptor state more closely.

• The DaqHwInfo properties are set by the call to InitHwInfo.

All adaptors need to follow the preceding pattern (the InitHwInfo method can
be replaced by a call to SetDaqHwInfo), and include the following additional
code:

• Code to initialize the device driver and hardware, if necessary

• Code to check the device ID to confirm that the requested hardware exists

• Code to attach to the required properties listed in Step 3.1 (see “Attaching to
a Property” in Chapter 4)

• Code to create adaptor-specific properties

A full discussion of interaction with properties is given in Chapter 4, “Working
with Properties.”

Because all Open methods typically include a call to SetDaqHwInfo, you should
implement SetDaqHwInfo prior to testing the hardware-specific adaptor.

The Data Acquisition Toolbox allows the user to query a specific subsystem to
obtain hardware information for that specific subsystem. A MATLAB user
would type the following code to obtain information about the XYZ adaptor
analog input device 5:
3-25

3 Step-by-Step Instructions for Adaptor Creation

3-2
>> daqhwinfo(analoginput('xyz', 5))

Note You could split this MATLAB statement into two by assigning the
analoginput object to a variable. Either way, the Data Acquisition Toolbox
first creates the subsystem and then provides hardware information about
that subsystem.

The information for a call to a subsystem’s daqhwinfo method is obtained by
calling the SetDaqHwInfo method of the requested subsystem. The
SetDaqHwInfo method should also be called by the Open method to initialize
these values on startup.

The SetDaqHwInfo method should use the _daqhwinfo IPropContainer
member variable defined in the ImwDevice interface class. Every subsystem
inherits from ImwDevice, and so already defines the _daqhwinfo member
variable. You put information into the _daqhwinfo IPropContainer by using
the IPropContainer put_memberValue method. Table 3-3 lists the values that
you should place in _daqhwinfo, and describes the type of data that should be
used for each member value. For sample code, see the SetDaqHwInfo method of
any of the adaptors included with the Data Acquisition Toolbox.

Table 3-3: SetDaqHwInfo Member Variables and Descriptions

Member Value Description Data Type (C++)

adaptorname Name of the adaptor String

bits Resolution of analog input subsystem Double

coupling Device coupling (can be set to “Unknown”) String

devicename Name of device. Typically, the name is
given as “<adaptorname>AI-<id>”.

String

differentialids Channel IDs for differential channels (or
empty if differential mode is not supported)

SafeArray (1 x nD)

gains Allowable gains for channels SafeArray (1 x nG)
6

About the Demo Adaptor Software
Compiling and Testing Analog Input Property Creation
After creating the DaqHwInfo method and implementing the Open method
correctly, you should be able to compile your project and test your adaptor’s
analog input subsystem. Tests should take place in MATLAB, by creating an
analog input object and calling the daqhwinfo and propinfo methods. For
example, to test the XYZ adaptor, the code is as follows:

ai = analoginput('xyz');

id Device ID Double

inputranges Allowable input ranges SafeArray (n x 2)

maxsamplerate Maximum permissible sample rate Double

minsamplerate Minimum permissible sample rate Double

nativedatatype The data type of raw data that MATLAB
can send to the hardware device. The
engine uses this value to convert voltages to
units that the hardware understands.

VariantType

polarity Vector of allowable polarities SafeArray

sampletype Either Scanning or Simultaneous Sample
and Hold (SSH)

Enum

singleendedids Channel IDs for single-ended channels (or
empty if single-ended mode is not
supported)

SafeArray (1 x nS)

subsystemtype Always set to "AnalogInput" String

totalchannels Total number of available channels Double

vendordriverdescription Description of the vendor driver used by the
adaptor for this device

String

vendordriverversion Version information for the vendor driver
used by the adaptor for this device

String

Table 3-3: SetDaqHwInfo Member Variables and Descriptions (Continued)

Member Value Description Data Type (C++)
3-27

3 Step-by-Step Instructions for Adaptor Creation

3-2
props = propinfo(ai)
dhinfo = daqhwinfo(ai)

You can now check the structures returned in props and dhinfo to ensure that
the correct default values and ranges are returned from a newly created object.
If you find that some values in props are incorrect, you can correct them by
modifying the Open method. Similarly, if the dhinfo structure returns incorrect
information, check the SetDaqHwInfo method.

The next step in implementing analog input is ensuring that your adaptor
responds appropriately to changes in properties.

About Native Data Types and Bits Properties
The NativeDataType property is important for the correct operation of the
adaptor. This property is defined by the adaptor in the SetDaqHwInfo method,
and refers to the native data type that the adaptor uses to return values to the
engine or receive data from the engine. Typically, the native data type is an
unsigned 16 bit integer (CComVariant type VT_I2), but can be other data types.
The Winsound adaptor, for example, provides support for 8 bit, 16 bit, and 32
bit native data types.

Closely linked with the NativeDataType property is the Bits property, which
defines the resolution of the analog input subsystem. The Bits property is used
to indicate to the user the actual resolution of the device; the NativeDataType
property is used by the engine to convert engineering values to native data, and
the reverse. Typically, Bits should be less than or equal to NativeDataType.

Note The Data Acquisition Toolbox does not currently support floating-point
native data types (floats or doubles). If your adaptor does not support reading
or writing of raw data values, you must use a “fake” native data type and
convert the data to floating point when you read data from a MATLAB buffer
or write data to a MATLAB buffer.
8

About the Demo Adaptor Software
Step 3.5 Implement the SetProperty and
SetChannelProperty Methods
In Step 3.4 you created default values and valid ranges for the properties you
defined in Step 3.1. In this step you implement code that monitors changes to
properties and/or channels in the analog input subsystem.

All Data Acquisition Toolbox adaptor properties are managed by the engine.
This includes any properties that are specific to your adaptor (as defined in
Step 3.1). The engine understands the following types of properties:

• Arbitrary strings. For example, the Name property can be set to any string
by the user. Arbitrary strings have no specific range.

• Enumerated string values. For example, the TriggerType property, which
the engine sets to one of Manual, Immediate, or Software. Also known as
enum values, these properties can take on only one of a specific number of
values. Although the user sets these values using a string (or a portion of a
string) the values are stored internally as an enumerated data type. An
example of an enum type is the TriggerType property, which can be set to
one of Manual, Immediate, or Software.

• Scalars. For example, the SampleRate property is a scalar value. Although
scalar properties can be any valid numeric data type in C++, MATLAB
converts the value to a double when presenting the information to the user.
Scalars typically have a range of valid values. The engine does not allow a
user to set the property to values outside that range.

• Vectors. For example, the BufferingConfig property, which is a
two-element vector. The engine provides these properties to the user, but
adaptors cannot create vector properties.

For most properties, your adaptor need only specify the default values, ranges,
additional (or reduced) enumerated values for enum property types, and
read-only status. However, some properties need to be closely monitored by the
adaptor, because they can change the behavior of other properties, or need to
be checked with the values of other properties. The adaptor therefore would in
these circumstances need to be notified each time a user makes changes that
affect such properties.

The Data Acquisition Toolbox provides this functionality by allowing an
adaptor to attach to a property. The process involves attaching a user value on
that property with the engine. The user value can be any nonzero integer. The
3-29

3 Step-by-Step Instructions for Adaptor Creation

3-3
Adaptor Kit provides functionality that makes registering and checking a user
value intuitive. For more information on attaching to properties, see
“Attaching to a Property” in Chapter 4.

For all analog input properties that are attached to by an adaptor, the engine
calls the SetProperty method of the analog input interface, passing it the user
value and the new value that the user has specified. For all analog input
channel properties that are registered by an adaptor, the engine calls the
SetChannelProperty method of the analog input interface, passing similar
information. For instance, modifying the InputRange of a channel calls the
SetChannelProperty.

The SetProperty method can check the user value (using the USER_VAL macro
defined by the Adaptor Kit) to determine which property has been modified.
You should perform one of the following functions in the SetProperty or
SetChannelProperty methods:

• Error, if the new value is invalid. The following example, from the Keithley
adaptor, checks whether the hardware supports the requested TransferMode
property, and errors out appropriately:
if (User == USER_VAL(pTransferMode))
{

if((long)(*val) == TRANSFER_DMA)
{

SelectDriverLINX(m_driverHandle);
if(!(DoesDeviceSupportDMA(m_pSR)))
{

return Error(_T("Keithley: This device does not
support DMA Transfers."));

}
m_usingDMA = true;

}
else
{

m_usingDMA = false;
}

}

• Change the new value if the property needs to be quantized or set to values
that the hardware can implement. The following example from the
0

About the Demo Adaptor Software
ComputerBoards adaptor calls UpdateRateandSkew to quantize the sample
rate and change the channel skew when the user changes the sample rate:
else if (User==USER_VAL(pSampleRate))
{
 RETURN_HRESULT(UpdateRateAndSkew(pChannelSkewMode,*val));
 _RequestedRate=*val;
 *val=pSampleRate;
}

• Change the values, defaults, and/or ranges of other properties based on the
new value. The following example from the ComputerBoards adaptor
modifies the TriggerCondition property based on changes to the
TriggerType property:

else if (User==USER_VAL(pTriggerType))
{

if (static_cast<long>(*val)==HW_DIGITAL_TRIG)
{

pTriggerCondition->ClearEnumValues();
pTriggerCondition->AddMappedEnumValue(GATE_HIGH,

L"GateHigh");
 pTriggerCondition->AddMappedEnumValue(GATE_LOW,

L"GateLow");
 pTriggerCondition->AddMappedEnumValue(TRIG_HIGH,

L"TrigHigh");
 pTriggerCondition->AddMappedEnumValue(TRIG_LOW,

L"TrigLow");
 pTriggerCondition=TRIG_NEG_EDGE;
 pTriggerCondition.SetDefaultValue(TRIG_NEG_EDGE);
 }
 else if (static_cast<long>(*val)==HW_ANALOG_TRIG)
 {
 pTriggerCondition->ClearEnumValues();
 pTriggerCondition->AddMappedEnumValue(GATE_NEG_HYS,

L"GateNegHys");
 pTriggerCondition->AddMappedEnumValue(GATE_POS_HYS,

L"GatePosHys");
 pTriggerCondition->AddMappedEnumValue(GATE_ABOVE,

L"GateAbove");
 pTriggerCondition->AddMappedEnumValue(GATE_BELOW,
3-31

3 Step-by-Step Instructions for Adaptor Creation

3-3
L"GateBelow");
 pTriggerCondition->AddMappedEnumValue(TRIGABOVE,

L"TrigAbove");
 pTriggerCondition->AddMappedEnumValue(TRIGBELOW,

L"TrigBelow");
 pTriggerCondition=TRIGABOVE;
 pTriggerCondition.SetDefaultValue(TRIGABOVE);
 RANGE_INFO *rInfo=*_validRanges.begin();
 pTriggerConditionValue.SetRange(rInfo->minVal,

rInfo->maxVal);
 }
}

Once you have completed the SetProperty and SetChannelProperty methods,
you can test the changes you make to your properties, by compiling your
adaptor and modifying properties of the adaptor in MATLAB. The easiest
technique for modifying properties is to use the daqpropedit function in
MATLAB, by calling

ai = analoginput('xyz');
daqpropedit(ai)
2

About the Demo Adaptor Software
A view of the Data Acquisition Toolbox Property Editor is shown below.

For more information on daqpropedit, consult the Data Acquisition Toolbox
User’s Guide.

Step 3.6 Implement the ChildChange Method
Data acquisition cannot take place without a list of channels from which to
sample data. The Data Acquisition Toolbox stores channels as children of the
analog input and analog output objects. Typically, an adaptor should know
when the user creates, removes, or reorders the channel list. If the adaptor
needs to track these changes to children, you must overload the ChildChange
method. Adaptors typically take one or more of the following actions in
response to a call to ChildChange:
3-33

3 Step-by-Step Instructions for Adaptor Creation

3-3
• Ensure that the hardware can handle the additional or removed channel.

• Check that the number of channels is within the limits of the hardware’s
channel list.

• Check whether the added channel is repeated elsewhere in the channel list;
some hardware does not allow repeated channels in a channel list.

• Some hardware can only support a channel range; the user would have to
add channels in strict order, and the adaptor would have to check this order.

• Update maximum sample rates based on added or removed channels.

Most adaptors should also keep track of each channel’s required input range,
either as a channel gain or a channel gain code. This list is updated whenever
a channel is added or removed through ChildChange, and when the input range
is changed through SetChannelProperty. For this reason, a separate private
method is usually implemented to deal with the channel list. For an example
of such a private method, see the UpdateChans method in the Keithley adaptor.

Understanding the ChildChange Type of Change Parameter
The ChildChange method is called whenever the channel list changes,
regardless of the reason for that change. Often it is useful to know why the
change occurred. The ChildChange method is passed as the first argument to
the parameter typeofchange as a DWORD. Using typeofchange, you can
determine the reason for the change as follows:

• If (typeofchange & START_CHANGE) is true, then the ChildChange method is
being called before the change has taken place. You should check to ensure
that the change is valid, by querying the reason for the change (see below).

• If (typeofchange & END_CHANGE) is true, then the ChildChange method is
being called after the change has happened. You should requery channel
properties and modify any other properties based on the modified channel
list.

• If you mask (typeofchange & CHILDCHANGE_REASON_MASK), you are left with
the reason for the change, which can be one of

- ADD_CHILD: A channel has been added.

- REINDEX_CHILD: The channel list has been reordered.

- DELETE_CHILD: A channel has been removed.

For examples of the use of the typeofchange parameter, see the Keithley
adaptor’s ChildChange method.
4

About the Demo Adaptor Software
Testing the ChildChange Method
Once you have implemented the ChildChange method, you can test the
addition, removal, and modification of channels in your adaptor. A typical test
might look like the following:

>> ai = analoginput(‘xyz’);
>> ch(1) = addchannel(ai, 0);
>> ch(2:3) = addchannel(ai, [1 2])
>> ch(4) = addchannel(ai,1)
>> set(ch(3), 'InputRange', [0 10])
>> delete(ch(2))

Your particular tests should include testing that the adaptor produces an error
when too many channels are added, and that channel deletion is handled well.

Step 3.7 Implement the GetSingleValue Method
Up to now, the adaptor you have written does not actually read data from the
hardware device. The code you have written so far provides good housekeeping,
and a consistent interface to the user to ensure flexibility and access to
complete hardware capabilities while preventing invalid states in the adaptor.
In this step you write the first (and sometimes only) code that actually reads
values from the data acquisition hardware.

The GetSingleValue method is called when

• The user requests data using the MATLAB getsample function and
GetSingleValues is not implemented (see Step 3.8).

• The user has selected software clocking and starts an acquisition task.

Note Even if you have implemented GetSingleValues, you must implement
GetSingleValue if you support software clocking for your device. The engine
does not use GetSingleValues for software-clocked acquisitions.

The GetSingleValue method should sample a single value from a single
channel. The GetSingleValue method is defined as follows:

HRESULT GetSingleValue(int chan, RawDataType* value)
3-35

3 Step-by-Step Instructions for Adaptor Creation

3-3
The channel number is defined by the variable chan, and the sampled raw data
value must be returned in value. For example, the Keithley implementation of
this code is as follows (note how the adaptor returns the value directly from the
device driver to value):

HRESULT Ckeithleyain::GetSingleValue(int chan, RawDataType*
value)
{

WORD ResultCode;
if (!m_isInitialized)
{

RETURN_CODE(InitializeDriverLINXSubsystem(m_pSR,
&ResultCode));

if (ResultCode != 0)
{

char tempMsg[255];
ReturnMessageString(NULL, ResultCode,tempMsg, 255);
return CComCoClass<ImwDevice>::Error(tempMsg);

}
}
SetupDriverLINXSingleValueIO(m_pSR, chan,

m_chanGain[chan], SYNC);
DriverLINX(m_pSR);
if (m_pSR->result != 0)
{

return CComCoClass<ImwDevice>::Error(
TranslateResultCode(m_pSR->result));

}
GetDriverLINXAIData(m_pSR, (unsigned short*)value ,0,1,1);
return S_OK;

}

Testing GetSingleValue
When you have implemented this method, you can test acquisition of data by
calling getsample with your analog input object, as follows:

ai = analoginput(‘xyz’);
addchannel(ai, 0); % Set up channel 0
s = getsample(ai); % Return a single value from channel 0
addchannel(ai, 1); % Add another channel
6

About the Demo Adaptor Software
s2 = getsample(ai); % Return data from channels 0 and 1

For adaptors that implement software clocking only, this is the last method you
need to implement. Software-clocked adaptors should not require any
additional methods to acquire data, as the software clocking methods are
created in the Adaptor Kit code. For limitations on software-clocked adaptors,
see “Limitations of Software-Clocked Adaptors” on page 3-11.

For adaptors that implement internal clocking, you need to follow the
remaining steps of Stage 3.

Step 3.8 Implement the GetSingleValues Method
The GetSingleValues method should only be implemented if the device driver
supports the acquisition of a single immediate sample from multiple channels
in one driver call. For drivers that only allow single immediate samples from
one channel, the GetSingleValue method is appropriate, as the engine then
takes care of looping through all channels in the channel list.

The GetSingleValues method should simply implement code that acquires a
single immediate sample from all the channels defined in the channel list. The
result should be returned in a SafeArray vector, and should contain raw data
in the data type defined by the adaptor for that hardware.

A typical example of a GetSingleValues implementation is as follows:

HRESULT CAin::GetSingleValues(VARIANT * Values)
{
 UpdateChans(true); // Update channel lists.

 TSafeArrayVector <unsigned short > binarray;
 binarray.Allocate(_nChannels);
 // Code to call hardware here.
 // Return result in binarray
 return binarray.Detach(Values);
}

When you have written the GetSingleValues method, you should retest the
adaptor using the getsamples function from MATLAB. See Step 3.7 for sample
MATLAB code.
3-37

3 Step-by-Step Instructions for Adaptor Creation

3-3
Step 3.9 Implement the Start, Trigger, and Stop
Methods
The final step in implementing the analog input subsystem is to provide
functionality for hardware-clocked or hardware-triggered acquisition tasks.
This final step is by far the most complex step in the implementation of the
analog input subsystem, and should not be implemented unless software
clocking is insufficient for your required task. If you are intending to
implement this step, it is assumed that you can configure the device driver to
continuously acquire data from a list of channels, clocking the device using the
hardware’s onboard clock. If this is not possible, you will have to resort to
software clocking and live with the limitations of that implementation.

Hardware-clocked adaptors require a number of technologies to be
implemented correctly in order to handle the data transfer between the engine
and the hardware device. To successfully implement hardware clocking, your
adaptor must

• Set up the acquisition task correctly so that continuous data acquisition can
take place at the desired rate, using the desired channels and triggering

• Handle buffering of data between the engine and the hardware device, so
that the hardware can provide the data to the engine without missing
samples or overrunning the hardware buffer on the device

• Handle messaging between the engine and the hardware device, so that the
hardware device stops when the engine has sufficient data or when the user
stops the acquisition, and so that the engine can keep track of the number of
samples acquired since starting the task

• Implement and/or manage multithreading in the adaptor to allow the device
to transfer data to the engine without interfering with MATLAB processing,
and to prevent MATLAB from blocking messages from the device driver

Support for hardware clocking requires, at a minimum, implementation of the
Start, Trigger, and Stop methods. These three methods are used by the
engine for managing a data acquisition task. Adaptors also typically write
methods to handle event notification or polling of the running task, and data
transfer methods to synchronize exchange of data between the engine and the
device driver.
8

About the Demo Adaptor Software
Implementing the Start Method
The Start method is called by the engine in response to a user’s issuing a start
command in MATLAB. The Start method should configure the acquisition
task and initialize any buffers being used for acquisition. Typical actions in the
Start method include

• Initializing the hardware device subsystem (if this can be done without
interfering with other subsystems, such as the analog output subsystem)

• Choosing buffer sizes based on the BufferingConfig and SampleRate
properties of the analog input object, and hardware and device driver
buffering characteristics

• Performing a final check on all properties to ensure that the acquisition can
be run as requested

• Configuring the device driver with the correct channel list, gains, and
triggers

The Start method should not start the analog input acquisition task. The
Trigger method is responsible for starting the task, setting the running flag,
and initializing any device driver event notification mechanisms.

Note For more information on buffering, particularly on how the engine
handles buffers, see Chapter 5, “Buffering Techniques.”

The following example code shows how the Keithley adaptor implements the
Start method:

HRESULT Ckeithleyain::Start()
{

if (pClockSource == CLCK_SOFTWARE)
return InputType::Start();

WORD ResultCode;
CComBSTR _error;
m_samplesThisRun=0;
m_triggersProcessed=0;
m_triggerPosted = false;

// First Check if the device is in use.
if(GetParent()->IsOpen((analoginputMask + m_deviceID)))
3-39

3 Step-by-Step Instructions for Adaptor Creation

3-4
return CComCoClass<ImwDevice>::Error(
CComBSTR("Keithley: The device is in use."));

// Check if there is an active Service request waiting to stop?
if (m_daqStatus!=STATUS_STOPPED)
{

return CComCoClass<ImwDevice>::Error(
CComBSTR("Keithley: Attempt to start a device
before previous task stopped."));

}
// Initialize the subsystem.
SELECTMYDRIVERLINX(m_driverHandle);
RETURN_CODE(InitializeDriverLINXSubsystem(m_pSR,

&ResultCode));
if (ResultCode != 0)
{

char tempMsg[255];
ReturnMessageString(NULL, ResultCode,tempMsg, 255);
return CComCoClass<ImwDevice>::Error(tempMsg);

}
RETURN_HRESULT(SetupSRForStart(true));

// Audit the Service Request to check for errors.
Ops ops = m_pSR->operation;
m_pSR->operation = AUDITONLY;
SELECTMYDRIVERLINX(m_driverHandle);
DriverLINX(m_pSR);
if (m_pSR->result != 0)
{

// Now remove the device from the message window:
GetParent()->DeleteDev((analoginputMask + m_deviceID));
char tempMsg[255];
ReturnMessageString(NULL, m_pSR->result,tempMsg, 255);
return CComCoClass<ImwDevice>::Error(tempMsg);

}
m_pSR->operation = ops;
return S_OK;

}

0

About the Demo Adaptor Software
Implementing the Trigger Method
The Trigger method is responsible for actually initiating the acquisition task.
The Trigger method is called immediately after the Start method unless
TriggerType is set to Manual and ManualHwTriggerOn is set to Trigger. See
“How Start and Trigger Work Together” on page 3-42 for more information on
these properties.

The Trigger method should simply start the acquisition task and set a running
flag. Additional operations to perform in the Trigger method include

• Ensuring that the message handler has a link to the analog input object that
initiates the task (see the Keithley adaptor implementation for an example)

• Trapping a failed task and calling the Stop method to inform MATLAB that
the device has stopped, and removing this device from the running list of the
adaptor (see the Keithley implementation of the Stop method for an
example)

The Trigger method should not necessarily handle hardware triggers.
Hardware triggers should be configured during the Start method and
processed by the event handler for your adaptor.

A typical implementation of the Trigger method is from the Keithley adaptor:

HRESULT Ckeithleyain::Trigger()
{

if(pClockSource == CLCK_SOFTWARE)
return InputType::Trigger();

 AUTO_LOCK;

// Register the device ID with the message window
if (GetParent()->AddDev((analoginputMask + m_deviceID),this))
{

return Error(_T("Keithley: The device is in use."));
}

//Start DriverLINX
SELECTMYDRIVERLINX(m_driverHandle);
DriverLINX(m_pSR);
if (m_pSR->result != 0)// If the Service request fails
{

// Remove the device from the message window:
3-41

3 Step-by-Step Instructions for Adaptor Creation

3-4
 GetParent()->DeleteDev((analoginputMask + m_deviceID));
return CComCoClass<ImwDevice>::Error(

TranslateResultCode(m_pSR->result));
}
m_daqStatus = STATUS_RUNNING;

 return S_OK;
}

How Start and Trigger Work Together
The Start and Trigger methods enable the user complete flexibility in how the
acquisition task is launched. A variety of data acquisition analog input object
properties influence how these two methods are called:

• When the user issues a start command in MATLAB, the engine calls the
Start method in the adaptor.

• If the TriggerType is set to Immediate or Software, the Trigger method is
called immediately after the Start method.

• If the TriggerType is set to Manual, the engine checks the
ManualHwTriggerOn property. If this property is set to Start, the Trigger
method is called immediately after the Start method. If ManualHwTriggerOn
is set to Trigger, the Trigger method is only called when the user issues the
trigger command in MATLAB.

When the Trigger method is called, MATLAB starts acquiring data into
internal buffers. If TriggerType is Immediate, this data is logged
immediately. If TriggerType is Software or Manual, the data is logged once
a software or manual trigger is issued. The engine uses the acquired data to
check for software triggers and to provide data to the user, using peekdata.

You do not need to handle ManualHwTriggerOn in any special way in order for
these operations to take place: The Data Acquisition Toolbox engine provides
all this functionality transparently to the user or the adaptor developer.
However, you do need to understand how the methods are called for debugging
purposes.

Implementing the Stop Method
The Stop method is responsible for

• Stopping the acquisition task
2

About the Demo Adaptor Software
• Removing the device from the list of running analog input subsystems

• Sending a stop event notification to the engine, which resets the object’s
Running property to off and allows the user to configure properties that are
read only when running

The Stop method is called in response to the user’s stopping a running task by
calling stop, and should also be called by the adaptor code:

• When the engine returns a buffer with the Buffer_Is_Last flag set (see
“Understanding Engine Buffers” in Chapter 5). This check is usually
performed in the device driver callback routines.

• When the adaptor’s event handlers detect that the device has stopped
acquiring data (calling Stop and sending a stop event notification to the
engine allows the engine to configure the analog input object appropriately).

• From the Start method, if the device cannot be configured properly for the
requested task.

An example of the Stop method implementation is from the Keithley adaptor:

HRESULT Ckeithleyain::Stop()
{

if (pClockSource == CLCK_SOFTWARE)
return InputType::Stop();

AUTO_LOCK;

if (m_daqStatus == STATUS_RUNNING)
{

if (pStopTriggerType==STP_TRIGT_NONE)
{

WORD ResultCode = StopDriverLINXSR(m_pSR);
if(ResultCode !=0)
{

_engine->WarningMessage(
TranslateResultCode(ResultCode));

}
}

// Now remove the device from the message window:
GetParent()->DeleteDev((analoginputMask + m_deviceID));
m_daqStatus = STATUS_STOPPED;
3-43

3 Step-by-Step Instructions for Adaptor Creation

3-4
_engine->DaqEvent(EVENT_STOP, -1, m_samplesThisRun,
NULL);

}
return S_OK;

}

Note in the example how a failed hardware stop is provided to the user as a
warning message, and not an error. This ensures that the Stop method
terminates successfully and allows the user to restart an acquisition task.

Keeping Track of Samples Acquired
During an acquisition task, your adaptor should keep track of the number of
samples that have been acquired by the hardware device. This information is
used by the engine to report on events (events can be sample-based or
time-based; sample-based timing is common in events) and to provide status
information to the user during an acquisition task. The engine also uses the
value to run various callback functions.

The engine keeps track of the number of samples processed by checking the
StartPoint field of the buffers returned by your adaptor. You should also use
the number of samples processed when posting other events, such as Data
Missed or Stop events.

Managing and Posting Events
Your adaptor is responsible for posting the following events:

• The Stop event (EVENT_STOP), posted when your adaptor receives a Stop
message (i.e., in your Stop method). This event is used by the engine to reset
the running status of an analog input object.

• Data Missed events (EVENT_DATAMISSED), which should be posted if you
detect any missed data events from your hardware device. If the device
driver does not support these events, you can check for them in your adaptor.

• Error events (EVENT_ERR), which should be posted if the device driver issues
an error during a task.

• Overrange events (EVENT_OVERRANGE), which should be posted if your
hardware is capable of registering when signals are over the input range
defined for a channel.

• Trigger events (EVENT_TRIGGER), which should only be posted by your
adaptor when hardware triggers are being used.
4

About the Demo Adaptor Software
To post an event, use the engine’s DaqEvent method, defined as follows:

HRESULT DaqEvent(DWORD event, double time, __int64 sample, BSTR
Message)

You should always pass as much accurate information as you can with your
type of event (event) but should at least post the event time (using time) or the
sample at which the event occurred (in sample). If you pass a time value of -1,
the engine calculates the time of the event based on the sample number. For
error events, you can pass the error string in the last parameter (Message).

For a complete discussion of the DaqEvent method, see “DaqEvent” in Appendix
B.

Implementing Callbacks and Threading
If you are using hardware clocking, you will need to implement callbacks from
your device driver to inform the engine of the progress of the acquisition, and
to pass data back to the engine as necessary. The level of support that your
device driver provides for callbacks defines how you implement this feature in
your adaptor. For a complete discussion of callbacks and threading, see
Chapter 6, “Callbacks and Threading.”

Returning Errors from Your Adaptor
There are two ways to return a meaningful error from an adaptor.

The first method is to return an error code in an HRESULT from a function call.
The error code should be a valid HRESULT with a facility of FACILITY_ITF and a
code greater than PRIVATE_BASE defined in daqmexstruct.h. One way to make
such an error code is to use the macro MAKE_PRIVATE_ERROR(x) defined in the
same file. If you add a descriptive string for the error to the adaptor’s resource
file and use the implementation of ImwAdaptor::TranslateError from the
demo adaptor, the string is returned as an error message in MATLAB.

A second method to return a descriptive error message is to have your adaptor
support ISupportErrorInfo, and return an IErrorInfo object using standard
COM methods. See the ATL function CComCoClass::Error and its use by the
cbi adaptor for an example of how to return this type of error.
3-45

3 Step-by-Step Instructions for Adaptor Creation

3-4
Stage 4 Implement the Analog Output Subsystem
Implementation of the analog output subsystem follows the same pattern as
implementation of the analog input subsystem. Much of the discussion of how
to perform the implementation is covered in “Implement the Analog Input
Subsystem” on page 3-18 and is not covered in this section. If you are not
implementing analog input, you will have to refer to that chapter where
appropriate.

Implementation of the analog output subsystem takes place in the following
steps (compare these to the analog input subsystem steps for a comparison of
the implementation):

1 Select the default values, ranges, and other characteristics of the analog
output subsystem properties.

2 Create the analog output COM interface and class definitions in the IDL file,
and incorporate the demo adaptor analog output implementation in your
project.

3 Modify the OpenDevice method of the adaptor class to create the required
subsystem when requested.

4 Modify the Open and SetDaqHwInfo methods of the Analog Output class to
handle device initialization, create custom properties, and set defaults and
ranges for all properties.

5 Implement the SetProperty and SetChannelProperty methods of the
Analog Output class, to handle property changes.

6 If necessary, overload the ChildChange method of the Analog Output class
to handle channel addition and removal.

7 Implement the PutSingleValue method if software clocking is to be used.

8 Implement the PutSingleValues method if the device driver supports easy
single acquisition from multiple channels.

9 Implement the Start, Trigger, and Stop methods for buffered acquisition.
Typically, this step involves writing buffering routines and message
6

About the Demo Adaptor Software
handlers, and can often use the multithreading built during implementation
of the analog input subsystem.

As the steps outlined above are no different from those implementing the
analog input subsystem, only the differences in implementation are discussed
directly in this stage.

Note You should use the answers to the questions posed in Stage 1 to decide
which of the preceding steps you will implement in your adaptor.

Step 4.1 Select Property Values, Ranges, and
Defaults for Analog Output
In order to control the behavior of a task (such as duration and volume of
acquisition, type of triggering, clocking, and event callbacks) the MATLAB
user modifies the properties of the Data Acquisition Toolbox analogoutput
object representing the data acquisition hardware he/she is using. The adaptor
must use the property values during acquisition tasks to control driver
settings, return messages, and start and stop acquisition. The adaptor must
also provide the data acquisition engine with appropriate properties, ranges,
and default values for the specific hardware referenced by the adaptor.
Successfully creating an adaptor therefore requires careful thought about the
existing common analog output subsystem properties, and the addition of
adaptor-specific properties where appropriate.

For the analog output subsystem, you should construct the same propinfo
table you compiled for the analog input subsystem. Properties that should be
considered in the table are given in Appendix D, “Sample Property and
daqhwinfo Tables.”

The propinfo table should reflect the state of the desired output from a call to
the propinfo method of the analoginput object. Thus, when you run

propinfo(analogoutput(<adaptor>))

the result should be the data presented in the propinfo table. The output of
the MATLAB code given above provides a test to confirm that these properties
have been created and initialized successfully.
3-47

3 Step-by-Step Instructions for Adaptor Creation

3-4
The outcome of Step 4.1 is a document that forms the blueprint for the
implementation of properties in later steps of this stage.

Step 4.2 Add the Demo Analog Output Code to
Your Project
This step is exactly the same as for the analog input subsystem, except that you
import the analog output code (demoaout.cpp and demoaout.h) and change the
input to output as appropriate.

Step 4.3 Modify the OpenDevice Method of the
Adaptor Class
In this step of the implementation of the analog output object, you ensure that
the renamed demo adaptor analog output object works in MATLAB. This stage
is the same as for the analog input subsystem.

• Uncomment the analog output construction statements in the OpenDevice
method of the Adaptor class. Be sure to include the Analog Output class
header file in the adaptor class implementation file.

• Compile the project, and you should be able to launch MATLAB and create
an analog output object for your adaptor:
ai = analogoutput('xyz');

If the compilation fails, you should ensure that all header files have been
created, and that your analog output class name is consistent throughout the
project. Also ensure that all the steps from the previous stage have been
implemented as well.

Your adaptor should now contain a complete analog output object, which does
not output any data to any device. In future stages of the analog output
implementation, you will progressively implement hardware output tasks. The
first of these stages is to ensure that the subsystem’s properties are initialized
correctly, possibly from hardware device detection.

Step 4.4 Modify the Analog Output Open and
SetDaqHwInfo Methods
This step is identical for analog input and for analog output. The only
differences are in the properties that must be implemented in the analog
output subsystem and SetDaqHwInfo method. For a discussion of the important
8

About the Demo Adaptor Software
properties for both of these methods, consult Appendix D, “Sample Property
and daqhwinfo Tables.”

Step 4.5 Implement the SetProperty and
SetChannelProperty Methods
This step is identical to Step 3.5 for analog input SetProperty and
SetChannelProperty methods.

Step 4.6 Implement the ChildChange Method
This step is identical to Step 3.6 for analog input ChildChange method.

Step 4.7 Implement the PutSingleValue Method
The PutSingleValue method is almost identical to the GetSingleValue
method and should be implemented in a similar fashion. The following points
should be noted:

• MATLAB passes native data to the adaptor (as defined by the
NativeDataType property and the NativeScaling and NativeOffset engine
properties for your adaptor; see “About Native Data Types and Bits
Properties” on page 3-28). Hence your PutSingleValue method must be able
to pass native data to the hardware device (native data is sometimes referred
to by driver vendors as raw data).

• PutSingleValue must transfer a single value to a single channel. The
PutSingleValue method is defined as follows:
HRESULT PutSingleValue(int chan, RawDataType value)

The channel number is defined by the variable chan, and the raw data value to
be output is passed in value.

Note Even if you have implemented PutSingleValues, you must implement
PutSingleValue if you support software clocking for your device. The engine
does not use PutSingleValues for software-clocked acquisitions.

For example, the Keithley implementation of this code is as follows:

HRESULT Ckeithleyaout::PutSingleValue(int chan,
3-49

3 Step-by-Step Instructions for Adaptor Creation

3-5
RawDataType value)
{

SELECTMYDRIVERLINX(m_driverHandle);
SetupDriverLINXSingleValueIO(m_pSR,chan,

m_chanGain[0], SYNC);
PutDriverLINXAOData(m_pSR, (unsigned short*)&value , 0, 1, 1);
SELECTMYDRIVERLINX(m_driverHandle);
DriverLINX(m_pSR);
if (m_pSR->result != 0)
{

return CComCoClass<ImwDevice>::Error(
TranslateResultCode(m_pSR->result));

}
return S_OK;

}

Testing PutSingleValue
When you have implemented this method, you can test data output by calling
putsample with your analog input object, as follows:

ao = analogoutput(‘xyz’);
addchannel(ao, 0); % Set up channel 0
putsample(ao, 2.5); % Send 2.5V to channel 0
addchannel(ao, 1); % Add another channel (if possible)
putsample(ao, [1 2.5]); % Send data to channels 0 and 1

For adaptors that implement software clocking only, this is the last method you
need to implement. Software-clocked adaptors should not require any
additional methods to acquire data, as the software clocking methods have
been created in the Adaptor Kit code. For limitations on software-clocked
adaptors, see “Limitations of Software-Clocked Adaptors” on page 3-11.

For adaptors that implement internal clocking, you need to follow the
remaining steps of Stage 4.

Step 4.8 Implement the PutSingleValues Method
The PutSingleValues method should only be implemented if the device driver
supports the output of a single immediate sample to multiple channels in one
driver call. For drivers that only allow single immediate output to one channel,
0

About the Demo Adaptor Software
the PutSingleValue method is appropriate, as the engine then takes care of
looping through all channels in the channel list.

The PutSingleValues method is passed a SafeArray of raw data values that
must be output to the channels defined in the analog output channel list. If you
implemented the ChildChange method correctly, you already have the channel
numbers and gains set up in local storage (or you can retrieve them from the
engine).

For a typical example of a PutSingleValues implementation, consult the
Keithley adaptor’s analog output subsystem.

When you have written the PutSingleValues method, you should retest the
adaptor using the putsample function from MATLAB. See Step 4.7 for sample
MATLAB code.

Step 4.9 Implement the Start, Trigger, and Stop
Methods
The final step in implementing the analog output subsystem is to provide
functionality for hardware-clocked or hardware-triggered acquisition tasks.
This step follows almost identically the implementation for the analog input
subsystem, and so is not discussed in this stage in as much detail. However, the
following sections note some differences in approach and implementation for
the analog output subsystem that are particular to that system.

Basic Approach of Hardware-Clocked Analog Output
The basic approach of the analog output subsystem is as follows:

• In the Start method, initialize the device and configure the output task
channels, gains, and clock frequency, plus any hardware triggers you might
be supporting. If you are using adaptor buffering (see Chapter 5, “Buffering
Techniques,” for more information), allocate the adaptor buffers. Following
initialization, you should prime the internal (or driver) buffers with as much
data as possible from MATLAB. This process should occur in the Start
method.

• In the Trigger method, set up the event handlers and start the acquisition
task. Also, set the property _running to true (see below).

• In the event handler routines, refill the adaptor or driver buffers until
MATLAB no longer provides any data (when the buffer pointer is null, or the
3-51

3 Step-by-Step Instructions for Adaptor Creation

3-5
BUFFER_IS_LAST flag has been set in a MATLAB buffer), then continue
queuing any correct data to the driver and/or wait until the hardware has
output all relevant data before calling the Stop method. The simplest way to
continue queuing data is to write OutOfDataMode values to the buffers until
you know that the last valid output data has been sent.

• During the task, you should update the _samplesOutput property (see below)
to reflect how many values have been sent to the hardware DAC.

About the _samplesOutput and _running Properties
All adaptors that inherit the TDADevice class (which your adaptor must
inherit) include the two properties _samplesOutput and _running. The
_samplesOutput property (a 64 bit integer) should reflect as closely as
practically possible the number of samples sent to the hardware DAC at any
time. The _running property, a Boolean, should be set to true when the analog
output task is running, and false when the task is stopped. Typically, the
Trigger method sets _running to true and the Stop method sets _running to
false.

These two properties are used by the TDADevice class’s implementation of the
GetStatus method, which is used by the engine to query the status of a running
task.

Understanding OutOfDataMode
After the output hardware has sent all the data requested by the user, most
hardware systems hold the last value output on each until a new value is set
for that channel. However, some applications require that the channels be
placed in some default mode of operation (e.g., output of zero) to protect
hardware and/or systems connected to that channel. MATLAB supports the
use of default channel values for each channel of an analog output subsystem.
The user can control whether the last output value for each channel is held or
whether the channel should be set to the default value by changing the
OutOfDataMode property. The valid values are DefaultValue and Hold, with
Hold being the default.

Your adaptor should handle the OutOfDataMode settings appropriately. For
example, the Keithley adaptor handles the OutOfDataMode settings by
overwriting the internal default channel values with the last output values
when OutOfDataMode is set to Hold. When the engine no longer passes buffers
to the adaptor, the data in the internal default channel values is repeatedly
2

About the Demo Adaptor Software
output to the driver, effectively filling the hardware FIFO with those values
(see below). The acquisition is then stopped after at least one of those samples
is sent to the output channels.

Dealing with the Output Hardware FIFO Buffer
Many hardware device drivers only report when data has been sent to the
hardware FIFO, and not necessarily how much data the device has sent to the
DAC. You may need to monitor and test the output sequences carefully to
ensure that all the required data is output to the DAC and not just to the FIFO.
An example of such a driver is the Keithley Instruments DriverLINX driver,
which provides feedback on a task only when a driver buffer has been emptied
(and not when the hardware FIFO buffer has sent the data). To handle this, the
Keithley adaptor queues at least a FIFO buffer of default values after the last
buffer has been received from MATLAB. The task then waits for the FIFO
buffer to be filled with these values before stopping the task. In this way, the
FIFO is emptied of real data, and the last value output is always the default
value for each channel.
3-53

3 Step-by-Step Instructions for Adaptor Creation

3-5
Stage 5 Implement the Digital I/O Subsystem
The digital I/O (DIO) subsystem implemented in MATLAB is not as
full-featured as the analog input and analog output subsystems and hence
requires far less implementation. The most notable difference is that the DIO
subsystem does not support continuous or timed reading or writing of digital
data through DIO lines. Instead, the adaptor provides techniques for reading
or writing only a single value at a time to the DIO subsystem. Hence, most
adaptors implement only five methods for DIO subsystems. This stage
discusses these five methods.

Implementation of the digital I/O subsystem takes place in the following steps:

1 Select the default values, ranges, and other characteristics of the DIO
subsystem properties.

2 Create the DIO COM interface and class definitions in the IDL file, and
incorporate an adaptor’s DIO implementation in your project.

3 Modify the OpenDevice method of the adaptor class to create the DIO
subsystem when requested.

4 Modify the Open and SetDaqHwInfo methods of the DIO class to handle
device initialization, create custom properties, and set defaults and ranges
for all properties.

5 Implement the SetPortDirection method of the DIO class to handle port
and/or line direction changes.

6 Implement the ReadValues method to read data from digital lines.

7 Implement the WriteValues method to write bits to digital lines.

Each of these steps is discussed in detail in the following sections.

Note You should use the answers to the questions posed in Stage 1 to decide
which of the preceding steps you will implement in your adaptor.
4

About the Demo Adaptor Software
Step 5.1 Select Property Values, Ranges, and
Defaults for Digital I/O
Because the Digital I/O (DIO) subsystem does not use continuous acquisition
tasks, the DIO object in the Data Acquisition Toolbox contains far fewer
properties than the analog input and analog output objects do. However,
planning the behavior of the existing properties for the DIO subsystem is just
as important as for the other two objects.

For the DIO subsystem, you should construct a propinfo table similar to the
one you compiled for the analog input subsystem. Properties that should be
considered in the DIO table are given in Appendix D, “Sample Property and
daqhwinfo Tables.”

The propinfo table should reflect the state of the desired output from a call to
the propinfo method of the digitalio object. Thus, when you run

propinfo(digitalio(<adaptor>))

the result should be the data presented in the propinfo table. The output of
the MATLAB code given above provides a test to confirm that these properties
have been created and initialized successfully.

The outcome of Step 5.1 is a document that forms the blueprint for the
implementation of properties in later steps of this stage.

Step 5.2 Add the Digital I/O Code from an
Adaptor to Your Project
Because the DIO subsystem is so small relative to the other objects, digital I/O
is not included in the demo adaptor. The easiest way to implement the DIO
subsystem is to use an existing class from another adaptor. We recommend the
Keithley adaptor as an example of implementation of digital I/O.

For the Keithley adaptor, the following methods are specific to the Keithley
implementation, and should be removed from your adaptor code.
3-55

3 Step-by-Step Instructions for Adaptor Creation

3-5
To include the Keithley DIO files in your project, perform the following:

• Copy the keithleydio.cpp and keithleydio.h files from the Keithley
adaptor to your adaptor project directory, and rename them for your adaptor
(for example, xyzdio.cpp and xyzdio.h).

• Search for all instances of “keithley” in these files and replace them with
your adaptor name. Be sure to do this for both the .cpp and .h files.

• Add those files to your project.

Step 5.3 Modify the OpenDevice Method of the
Adaptor Class
In this step of the implementation of the digital I/O object, you ensure that the
adaptor can create a digital I/O object. This stage is the same as for the analog
input subsystem.

Uncomment the digital I/O construction statements in the OpenDevice method
of the Adaptor class. Be sure to include the digital I/O class header file in the
adaptor class implementation file.

Note You are unable to test the adaptor at this stage, as you need to modify
the methods written for the Keithley adaptor.

Method Description (Reason for Removing)

GetParent Used to control the message window for Keithley acquisition tasks. You
should not implement this method in your digital I/O subsystem.

IsChanClockOrTrig Excludes all ports that are reported by the Keithley DriverLINX driver
as being digital I/O ports when they are in fact external clock or trigger
lines. Not required for your implementation.

SetParent Used to control the message window for Keithley acquisition tasks. You
should not implement this method in your digital I/O subsystem.
6

About the Demo Adaptor Software
Step 5.4 Modify the DigitalIO Open and
SetDaqHwInfo Methods
This step is identical to the previous subsystem implementations. The Open
method typically just checks the device ID and initializes the subsystem, then
calls the SetDaqHwInfo method. For a discussion of the important properties
for SetDaqHwInfo, consult Appendix D, “Sample Property and daqhwinfo
Tables.”

Step 5.5 Modify the SetPortDirection Method
The SetPortDirection method is used to set up the read or write status of each
line in each port. The calling syntax of the method is as follows:

HRESULT ::SetPortDirection(LONG Port, ULONG DirectionValues)

The first argument is the port number, and the second argument is a masked
list of directions for that particular port. A 0 in any bit position means that the
particular line should be an input (reading), while a 1 in any bit position means
that the line must be configured for output (writing).

Note For port-configurable devices, the DirectionValues variable is always
set to 0 for input, or 255 for output, regardless of the size of the port.

A typical example of the SetPortDirection method is given below for the
ComputerBoards adaptor:

HRESULT CDio::SetPortDirection(LONG Port, ULONG DirectionValues)
{

if (PortNum[Port]==AUXPORT)
return S_OK;

if (DirectionValues==0)
{

CBI_CHECK(cbDConfigPort(_BoardNum,
PortNum[Port],DIGITALIN));

}
else
{

CBI_CHECK(cbDConfigPort(_BoardNum,
PortNum[Port],DIGITALOUT));
3-57

3 Step-by-Step Instructions for Adaptor Creation

3-5
}
return S_OK;

}

Step 5.6 Implement the ReadValues Method
The ReadValues method is used to read data from a number of digital lines. The
ReadValues method is called whenever the user requests digital input using
the getvalue function in MATLAB (see “Reading Line Values” in Chapter 2 for
more information on the getvalue function).

A typical implementation of this method is shown for the ComputerBoards
adaptor:

HRESULT CDio::ReadValues(LONG NumberOfPorts, LONG * PortList,
ULONG * Data)

{
 if (Data == NULL)
 return E_POINTER;
 USHORT val;
 for (int i=0;i<NumberOfPorts;i++)
 {
 CBI_CHECK(cbDIn(_BoardNum,PortNum[PortList[i]],&val));
 Data[i]=val;
 }
 return S_OK;
}

The data is always returned to MATLAB as unsigned long data.

Note Some boards allow lines on a given port to be configured separately. In
this case, ReadValues still assumes that the whole port will be read. However,
the values obtained from the lines configured for output are meaningless,
because they reflect values latched from a previous write operation. The
engine returns only the requested line information to the user.
8

About the Demo Adaptor Software
Testing the ReadValues Method
Once you have written the ReadValues method, you can test your device. The
code given in “Reading Line Values” in Chapter 2 provides example code to test
your adaptor.

Step 5.7 Implement the WriteValues Method
The WriteValues method is used to write data to a number of digital lines. The
WriteValues method is called whenever the user sends digital input data using
the putvalue function in MATLAB (see “Writing Line Values” in Chapter 2 for
more information on the putvalue function).

A typical implementation of this method is shown for the ComputerBoards
adaptor:

HRESULT CDio::WriteValues(LONG NumberOfPorts,
LONG * PortList, ULONG * Data, ULONG * Mask)

{
 for (int i=0;i<NumberOfPorts;i++)
 {
 CBI_CHECK(cbDOut(_BoardNum,PortNum[PortList[i]],Data[i]));
 }
 return S_OK;
}

Testing the WriteValues Method
Once you have written the WriteValues method, you can test your device. The
code given in “Writing Line Values” in Chapter 2 provides example code to test
your adaptor.
3-59

3 Step-by-Step Instructions for Adaptor Creation

3-6
0

Accessing Properties from Your Adaptor 4-4
Accessing a Property Using GetProperty 4-4
Attaching to a Property 4-5

Creating Adaptor-Specific Properties 4-8

Modifying Property Values, Defaults, and Ranges . . . 4-10
Setting a Range to Infinity 4-11

Working with Enumerated Properties 4-12

Passing Arrays to MATLAB Using Safe Arrays 4-14
4

Working with Properties

Overview . 4-2

4 Working with Properties

4-2
Overview
This chapter contains information on dealing with Data Acquisition Toolbox
properties in your adaptor. This information provides you with techniques for
using the Adaptor Kit templates for

• Accessing properties from your adaptor

• Attaching to properties to monitor property changes (or for frequent
interaction with the property)

• Creating adaptor-specific properties

Once you have created a reference to the property (using one of the preceding
techniques), this chapter also provides you with information on

• Setting values, defaults, and ranges

• Adding and removing items from enumerated lists

The Data Acquisition Toolbox uses properties of data acquisition objects to
control how the object behaves in response to user requests. Any action taken
by a data acquisition object should be due to specific property values, or
combinations of values of many properties.

MATLAB users interact with properties by using the get and set methods on
the data acquisition object. However, users cannot set properties to any
arbitrary value. Properties have defined types, and can have defined ranges or
enumerated lists from which the user can select a value.

Adaptors can access properties through their IPropRoot interfaces. Property
methods are generally called from within

• The adaptor’s Open method, when creating an adaptor-specific property

• The adaptor’s Open method, when changing the characteristics of an existing
property

• The adaptor’s SetProperty method, when the user modifies a property that
affects the characteristics of other properties or requires special attention
because of hardware limitations (for example, quantization of sampling
rates)

• The adaptor’s SetChannelProperty method, when modifying one channel
property affects the characteristics of another property

Overview
• The adaptor’s Start method, when accessing values of a property that are
needed to set up the acquisition task

Note This chapter should be used as a reference for techniques, and not as a
reference for the Adaptor Kit ATL code. The Adaptor Kit ATL code does not
need to be understood in order for you to use the ATL templates.
4-3

4 Working with Properties

4-4
Accessing Properties from Your Adaptor
The data acquisition engine provides property management functions,
exposing a number of methods to your adaptor through the IPropRoot,
IPropValue, and IPropContainer interfaces. Although you can use these
interface methods directly, the Adaptor Kit includes some helper functions to
allow you to interact with properties more easily.

The first requirement for interacting with a property is to be able to access that
specific property. Some properties require frequent interaction from the
adaptor, and those should be accessed using the ATTACH_PROP macro.
Properties that require less frequent interaction should be accessed through
the GetProperty method, which your adaptor inherits from CmwDevice.

Note Even if you do not need to monitor changes in a property, if you
frequently need the value of that property in your adaptor, you should attach
to that property.

For information on attaching to properties, see “Attaching to a Property” on
page 4-5.

Accessing a Property Using GetProperty
You can obtain a pointer to a property by using the GetProperty method
provided in the CmwDevice class. Because your adaptor inherits from this class,
you can use this method anywhere in your adaptor.

The GetProperty method takes two arguments: the property name (a wide
character array) and a pointer to an IProp interface. The following code returns
the ClockSource property in variable propCS:

CComPtr<IProp> propCS;
GetProperty(L"ClockSource", &propCS);

You can now access the properties through propCS. When you finish using the
property, you should call the Release method:

propCS.Release();

Accessing Properties from Your Adaptor
Attaching to a Property
You should attach to properties when

• Your adaptor needs to monitor changes in that property.

• Your adaptor frequently needs to query the property (usually to obtain the
current value).

The ATTACH_PROP macro sets up a local pointer to a particular property, which
can be accessed throughout the adaptor. ATTACH_PROP is the preferred method
of attaching to properties. The ComputerBoards and Keithley adaptors use the
ATTACH_PROP macro.

Note The Winsound and Nidaq adaptors do not implement the ATTACH_PROP
macros. Instead, they use lower-level methods from the IPropRoot and IProp
interfaces. For code examples of the ATTACH_PROP macro, consult the Keithley
or ComputerBoards adaptor code.

The ATTACH_PROP macro works together with the property templates from the
Adaptor Kit. To use the ATTACH_PROP macro, you need to define a local
(typically private) variable using the property templates from the Adaptor Kit.
The variable name must begin with a “p”, and should then have a descriptive
name after the “p”. For example, the local variable for the ClockSource
property would be named pClockSource.

Table 4-1 lists, with examples of their use, the property templates defined in
the Adaptor Kit. Of these templates, the most commonly used are the
CLocalProp (for obtaining properties that are seldom used) and TRemoteProp
class (for obtaining properties that change default values and/or ranges, or
attaching to properties).
4-5

4 Working with Properties

4-6
The Adaptor Kit defines some data types that are derived from these classes.
These data types should be used whenever possible, as they ensure clarity and
consistency in adaptor data types. The derived data types are given in
Table 4-2, including examples of their use in existing adaptors.

Table 4-1: Adaptor Kit Defined Property Classes and Templates

Type Description and Typical Usage Example

CLocalProp Virtual base class. All other property classes derive
from this class. Use this class when obtaining an
IPropRoot interface for seldom-accessed properties

All SetProperty
methods

CRemoteProp Class with added SetRange and SetDefaultValue
methods. Used by template classes.

None. Use Template
classes.

TProp Base template for properties that should hide the
IPropRoot interface.

See Table 4-2.

CEnumProp Enumerated property class. Use this class to check
an enumerated property value. Use
CachedEnumProp for modifying enum values.

pOutOfDataMode in
Keithley analog output

TRemoteProp Template class for defining remote properties. Use
this class if you need to change default values and
set new ranges for a property.

pSamplesPerTrigger in
Keithley analog input

TCachedProp Template for cached properties. Use instead of
TRemoteProp if a property value should be tested
locally prior to updating in engine. Then use
SetLocal to set local values and SetRemote to set
remote values (= operator sets both local and
remote values).

_chanSkew property in
Nidaq analog input

TArrayProp Template for array properties. Although adaptors
cannot create array properties, the engine defines
some array properties that might be required in the
adaptor. See derived types in Table 4-2.

See Table 4-2.

Accessing Properties from Your Adaptor
Most properties are attached to in the Open method of the subsystem.

Note You do not need to release properties you have attached to; this is done
automatically when you delete your object. However, you do need to release
properties obtained using the lower level GetMemberInterface.

Table 4-2: Derived Data Types for Properties

Type Description Example

IntProp Integer property. Cannot set default value or
ranges.

pInputType in
ComputerBoards adaptor

ShortProp Short property. Cannot set default value or
ranges.

None

DoubleProp Double property. Cannot set default value or
ranges.

_triggerDelay in Nidaq
analog input

BoolProp Boolean property. Cannot set default value or
ranges.

_driveAIS in Nidaq
analog input

Int64Prop 64 bit Integer property. Cannot set default
value or ranges.

pTriggerRepeat in
ComputerBoards adaptor

CachedEnumProp Cached property that includes the ability to
manipulate enumerated values. See “Working
with Enumerated Properties” on page 4-12.

pChannelSkewMode in
Keithley analog input

DoubleArrayProp For working with array of doubles. Cannot be
created by adaptor.

pTriggerConditionValue
in Keithley analog input

IntArrayProp For working with array of integers. Cannot be
created by adaptor.

None
4-7

4 Working with Properties

4-8
Creating Adaptor-Specific Properties
Apart from attaching to specific common properties, adaptors might require
one or more properties that are specific to the hardware being supported by
that adaptor. For instance, the Keithley adaptor defines the user-modifiable
properties for setting Stop Triggers (StopTriggerChannel, for instance, is the
channel to set for an analog stop trigger). If your adaptor needs to define new
properties, you should create them using the CREATE_PROP macro.

The CREATE_PROP macro is used in the same manner as the ATTACH_PROP macro
described in “Attaching to a Property” on page 4-5. First, a public member
variable having one of the Adaptor Kit defined property types (see Table 4-1
and Table 4-2) must be defined, beginning with a “p” followed by the
descriptive name for the property. Then, in the Open method of the required
subsystem, the CREATE_PROP macro is called with the name of the property and
the named member variable for that property.

The following code segment from keithleyain.h, the header file of the
Keithley analog input subsystem, demonstrates definition of the
adaptor-specific property member variables:

// Engine Properties - Device Secific
CachedEnumProppStopTriggerType;
TRemoteProp<double>pStopTriggerChannel;
CachedEnumProppStopTriggerCondition;
TRemoteProp<double>pStopTriggerConditionValue;
TRemoteProp<double>pStopTriggerDelay;
CachedEnumProppStopTriggerDelayUnits;
CachedEnumProppTransferMode;

These properties are used in the Open method of the same subsystem
(keithleyain.cpp):

// This is the Stop Trigger Condition Value Property
CREATE_PROP(StopTriggerConditionValue);
SetDefaultStopTriggerConditionValues();

// This is the Stop Trigger Delay Property
CComVariant _minstoptriggerdelay(0);
CComVariant _maxstoptriggerdelay(INFINITY);
CComVariant _defaultstoptriggerdelay(0);

Creating Adaptor-Specific Properties
_maxstoptriggerdelay.ChangeType(VT_I8);

CREATE_PROP(StopTriggerDelay);
pStopTriggerDelay->SetRange(&_minstoptriggerdelay,

&_maxstoptriggerdelay);
pStopTriggerDelay->put_DefaultValue(_defaultstoptriggerdelay);
pStopTriggerDelay->put_Value(CComVariant(0L));

// This is the Stop Trigger Delay Units Property
CREATE_PROP(StopTriggerDelayUnits);
pStopTriggerDelayUnits->AddMappedEnumValue(SECONDS, L"Seconds");
pStopTriggerDelayUnits->AddMappedEnumValue(SAMPLES, L"Samples");

pStopTriggerDelayUnits.SetDefaultValue(SECONDS);

The next section explains how to set default values, current values, and
property ranges. For a discussion of enumerated properties, see “Working with
Enumerated Properties” on page 4-12.

Note Most adaptor-specific properties are either enumerated or double types.
The current Adaptor Kit does not permit adaptor-specific properties to be
arrays (a future version of the Adaptor Kit will support array properties).
Hence, most adaptor-specific properties are defined as one of CachedEnumProp,
TLocalProp, or TRemoteProp data types.

Supporting daqpropedit for Adaptor-Specific Properties
In order for your adaptor to work well with the property editor GUI (run by
calling daqpropedit in MATLAB) you need to provide help for your custom
properties. You need to modify the privatePropDesc.m file in the
$MATLABROOT\toolbox\daq\daq\private directory. See the help on
privatePropDesc for more information.
4-9

4 Working with Properties

4-1
Modifying Property Values, Defaults, and Ranges
Once you have created a reference to a property, either locally or global to the
subsystem or adaptor, you can modify property values, set defaults, and set
valid ranges for that property.

Note In order to set the range and default values for a property, that
property must be defined as type RemoteProp or LocalProp, either using the
templates (TremoteProp and TCachedProp) or the classes (CRemoteProp and
ClocalProp) defined by the Adaptor Kit.

To set the default value for a property, use the put_DefaultValue method of
the IPropRoot interface (inherited by the classes and templates defined above),
passing the default value typecast to a CComVariant.

To set the range for a property, use the SetRange method on the property,
passing the minimum and maximum allowable values for that property to the
method as CComVariant data types.

To set the current value of a property, you can use either

• The put_Value method of the property, passing a CComVariant as the value
(for CRemoteProp data types this is the only way to change property values)

• Assignment, if the property is of type TRemoteProp, TCachedProp, or
CachedEnumProp

The following example, from the Keithley analog input subsystem’s Open
method, sets the range, default value, and current value for the ChannelSkew
property:

// This is the Channel Skew Property
ATTACH_PROP(ChannelSkew);
CComVariant _minchannelskew(m_minManChanSkew);
CComVariant _maxchannelskew(m_maxManChanSkew);
pChannelSkew.SetRange(_minchannelskew, _maxchannelskew);
double defaultskew = m_minManChanSkew;
pChannelSkew.SetDefaultValue(defaultskew);
pChannelSkew->put_Value(CComVariant(defaultskew));
0

Modifying Property Values, Defaults, and Ranges
Note The method calling syntax differs between put_Value and the methods
SetRange and SetDefaultValue, because the property class template
CRemoteProp, from which TRemoteProp and TCachedProp derive, defines the
SetRange and SetDefaultValue methods, and so these methods need not be
dereferenced to the IPropRoot interface. However, put_Value is not
overloaded in any methods and must therefore be dereferenced to the
IPropRoot method.

Setting a Range to Infinity
To set a property range to infinity, use the math.h header file and include the
following lines in your code:

#include <limits>
#define INFINITY std::numeric_limits<double>::infinity()

Then to set a value to infinity, use a CComVariant of value INFINITY. The
following example from the Keithley adaptor demonstrates this:

CComVariant _minstoptriggerdelay(0);
CComVariant _maxstoptriggerdelay(INFINITY);
CComVariant _defaultstoptriggerdelay(0);

_maxstoptriggerdelay.ChangeType(VT_R8);

CREATE_PROP(StopTriggerDelay);
pStopTriggerDelay->SetRange(&_minstoptriggerdelay,

&_maxstoptriggerdelay);
pStopTriggerDelay->put_DefaultValue(_defaultstoptriggerdelay);
pStopTriggerDelay->put_Value(CComVariant(0L));

Setting a Null Default Value
Not yet documented.
4-11

4 Working with Properties

4-1
Working with Enumerated Properties
Apart from double properties, the most common property type is an
enumerated property. Enumerated properties appear to the user to be
properties that take on one of a possible range of string values. Internally, the
enumerated property is a long integer property. The Adaptor Kit provides the
CachedEnumProp data type to handle these property types.

You work with enumerated properties in the same manner as other properties,
with the following additional functionality:

• Removing individual enumerated values with
RemoveEnumValue(StringValue);

• Removing all enumerated values with ClearEnumValues();

• Adding enumerated values with AddMappedEnumValue(value,
StringValue)

In all cases, values must be passed as CComVariants. Typically, you should
define all permissible enumerated values as C enum data types, to provide
consistency in your code.

All strings passed to enumerated data types are case sensitive, and appear as
you typed them in the call to AddMappedEnumValue. By convention, enumerated
values have no spaces or underscores, and the first letter of each word in the
type is capitalized. Hence, the StopTriggerType for the Keithley adaptor is one
of None, HwDigital, or HwAnalog, and not HW_Analog, and so on.

The following example from the ComputerBoards adaptor demonstrates all the
above actions on the ClockSource property of the 7t subsystem:

ATTACH_PROP(ClockSource);
pClockSource->AddMappedEnumValue(CLOCKSOURCE_SOFTWARE,

L"Software");
if (_UseSoftwareClock)
{

pClockSource->RemoveEnumValue(CComVariant(L"Internal"));
pClockSource.SetDefaultValue(CLOCKSOURCE_SOFTWARE);
pClockSource=CLOCKSOURCE_SOFTWARE;

}
else
{

2

Working with Enumerated Properties
pClockSource->AddMappedEnumValue(
MAKE_ENUM_VALUE(0,EXTCLOCK),
L"External");

pTransferMode->AddMappedEnumValue(DMAIO , L"DMA");
pTransferMode->AddMappedEnumValue(BLOCKIO ,

L"InterruptPerBlock");
}

In the preceding example, the ComputerBoards adaptor allows software
clocking for all devices. If a device only supports software clocking, Internal is
removed from the enumerated types, and Software is set as the default value.
If a device supports internal clocking, the adaptor provides three additional
types: External, DMA, and InterruptPerBlock.
4-13

4 Working with Properties

4-1
Passing Arrays to MATLAB Using Safe Arrays
Some adaptor properties need to return an array of data to MATLAB. One
example is the ObjectConstructorNames property, defined by the adaptor’s
AdaptorInfo method, which must return an Mx3 cell array of object
constructor strings. Another example is the InputRange property, also
returned in SetDaqHwInfo as an Mx2 matrix of valid input ranges. This data
must be passed to MATLAB as a CComVariant containing a SafeArray. This
section explains how to pass array information to MATLAB.

This section provides only some sample code on how Safe Arrays may be used
in the adaptor, as an example for you to follow. For a complete discussion on
SafeArrays, consult your Visual C++ documentation.

The following sample code provides a template for creating and using
SafeArrays with your adaptor. In this particular code sample, the
ObjectConstructorNames property is being created for a parallel port adaptor.

Note Some code has been removed from the final adaptor implementation for
conciseness. In practice, the ObjectConstructorName is typically populated at
the same time as the BoardNames and BoardIDs properties, which are all
SafeArrays. See the Keithley or ComputerBoards adaptors for examples.

// Create constructor string Array (NumOfPorts x 3 DAQ Subsystems)
// Build up subsystems arrays -- up to 3 subsystems per board
VARIANT varSubSystem;
CComBSTR *subsystems;
SAFEARRAY *pSubSys;
SAFEARRAYBOUND arrayBounds[2];
// Define array bounds
arrayBounds[0].lLbound = 0; //Rows
arrayBounds[0].cElements = numports;
arrayBounds[1].lLbound = 0; // Columns
arrayBounds[1].cElements = 3;

// Construct a SafeArray
pSubSys = SafeArrayCreate(VT_BSTR, 2, arrayBounds);
if (pSubSys!=NULL)
{

4

Passing Arrays to MATLAB Using Safe Arrays
// Associate SafeArray with Variant
varSubSystem.parray = pSubSys;
varSubSystem.vt = VT_ARRAY | VT_BSTR;
hRes = SafeArrayAccessData(pSubSys, (void **)&subsystems);
if (SUCCEEDED(hRes))
{

// Define Constructor strings and IDs
wchar_t str[40];

// Loop through each found port
for (int i=0; i<numports; i++)
{

//This adaptor only supports digitalIO so set
//the first (AI, AO) to null:
subsystems[i].Append("");
subsystems[i+numports]=(BSTR)NULL;
// And set the Digital I/O string
swprintf(str, L"digitalio('%s','LPT%c')",

(wchar_t*)ConstructorName,
BoardIDs[i]);

subsystems[i+2*numports]=str;

}//end for

// Send Constructor names to DAQENGINE
hRes = Container->put_MemberValue(

L"objectconstructorname",
varSubSystem);

}
// Destroy SubSystem SafeArray
SafeArrayUnaccessData (pSubSys);
SafeArrayDestroy (pSubSys);

}
return hRes;

In the preceding example, the following implementation points should be
noted:
4-15

4 Working with Properties

4-1
• The Safe Array pSubSys is contained within a CComVariant varSubSystem
that is passed back to the engine; the Safe Array is never directly sent back
to the engine.

• The Safe Array is created with the SafeArrayCreate method, as an array of
type VT_BSTR, with the dimensions specified in arrayBounds.

• To place data into the Safe Array subsystems, a pointer to a CComBStr is set
to the data memory location by the SafeArrayAccessData method.

• The strings are passed through the subsystems variable to the Safe Array,
in column order (column one first, then column two, etc.).

• The only subsystem that this adaptor supports is digital I/O, for each device
denoted by the array BoardIDs (the allocation of BoardIDs is not shown in
this code).

• Once the subsystem has been passed to the engine (through the
varSubSystem CComVariant) the Safe Array is freed and destroyed.

This procedure should be followed for all safe arrays used in the adaptor, with
modifications as necessary. For example, you might need to use a different data
type for both the Safe Array definition (SafeArrayCreate) and the data
accessor, or define the dimensions appropriately for your adaptor.
6

Understanding Engine Buffers 5-3

Implementing Buffering in Your Adaptor 5-6
Direct Buffering 5-6
Intermediate Buffering 5-9
5

Buffering Techniques

Overview . 5-2

5 Buffering Techniques

5-2
Overview
The Data Acquisition Toolbox is designed to provide a flexible range of
implementation options to the adaptor developer, and to the user of the toolbox.
You can write adaptors that implement only software-clocked acquisition,
which limits the sampling frequency for acquisition tasks to around 500 Hz. To
provide more functionality, you must be able to configure and start an
acquisition task that runs continuously until interrupted by the user.
Continuous acquisition tasks require high-speed access to data buffers.

This chapter provides an overview of how to implement buffering for
hardware-clocked continuous tasks in the Data Acquisition Toolbox.

Note You do not need to read this chapter if you are only implementing
software clocking, as the engine and adaptor kit code already implements
software-clocked continuous acquisition.

This chapter starts by introducing buffering in the Data Acquisition Toolbox
engine. The simplest kind of buffering (direct buffers) is then discussed,
followed by ideas on implementing intermediate buffering in the adaptor.

Three types of buffering are discussed in this chapter:

• Direct buffering between the Data Acquisition Toolbox engine and the
hardware device driver. This buffering technique is implemented in the
Winsound and Keithley adaptors.

• Circular buffering in the adaptor. The engine and device driver are
separated by a circular buffer located within the adaptor, and the adaptor is
responsible for queuing data from the engine buffers, through the circular
buffer to the hardware device, for analog output tasks, and from the
hardware device through the circular buffer to the engine buffers, in the case
of analog input tasks.

• Ping-pong buffering in the adaptor. Similar to circular buffering, but uses
two separate buffers alternately.

Understanding Engine Buffers
Understanding Engine Buffers
For analog input and analog output tasks, the Data Acquisition Toolbox engine
makes use of buffers of data to manage the data transfer, event notification,
and memory management tasks. Engine buffers are responsible for storing
data from an analog input task, prior to a user’s requesting that data with a
getdata function call, and for queuing data for an analog output task with
putdata. Thus, data interaction between the adaptor and the engine takes
place through engine buffers.

Engine buffers for any task are a predetermined size, presented to the user
through the BufferingConfig property. Although the engine attempts to size
buffers appropriately for the desired sample rate, the user can set the size of
engine buffers by modifying the BufferingConfig property directly. Although
it is possible to restrict the size of the engine buffers (see, for instance, the
hpe1432 adaptor, which limits the maximum size of engine buffers) the adaptor
should not expect strict control over engine buffer sizes, as this would limit
functionality for the user.

Buffer interaction between the engine and the adaptor takes place through
BUFFER_ST structures, defined as follows (a full description of this structure is
given in Appendix C, “Engine Structures”):

typedef struct tagBUFFER {
long Size; // In bytes
long ValidPoints; // In raw points

//(MATLAB samples is ValidPoints/channels)
unsigned char *ptr;
DWORD dwAdaptorData; // Reserved by the engine for use by adaptor
unsigned long Flags; // Flag values are defined in
unsigned long Reserved; // Reserved for future use by the engine
hyper StartPoint; // Count of points since start
double StartTime; // Time of the start of the buffer from GetTime
double EndTime; // Time of the end of the buffer from GetTime
} BUFFER_ST;

The buffer size is set by the BufferingConfig property. However, because
acquisition tasks might not necessarily stop at a buffer boundary, the
ValidPoints field contains the number of valid points (samples multiplied by
the number of channels) contained (for analog output) or expected (for analog
input) in the buffer of data passed by the engine. The data is stored as
5-3

5 Buffering Techniques

5-4
interleaved samples in the memory space pointed to by ptr; the first channel
of sample N is followed by the second channel of sample N, until all channels
are filled, and channel 1 of sample N+1 follows. The Flags field contains,
among others, a flag to indicate whether the buffer is the last buffer in the
current task (Flags & BUFFER_IS_LAST).

Analog Input Tasks
For an analog input task, the engine provides the adaptor with empty buffers
whenever the adaptor calls GetBuffer. The last buffer the engine expects to be
requested is flagged with the BUFFER_IS_LAST flag.

Before sending a buffer back to the engine, the ValidPoints and StartPoint
fields should be filled in the BUFFER_ST structure, and the acquired data must
be copied into the memory space pointed to by ptr. If the adaptor has better
time information than the engine, it should fill in the start and end times for
the buffer and set the flags BUFFER_START_TIME_VALID and
BUFFER_END_TIME_VALID in the flags member.

The adaptor should send the buffer back to the engine using the PutBuffer
engine method.

If the BUFFER_IS_LAST flag is set in the buffer, stop the acquisition after filling
that buffer with ValidPoints.

Analog Output Tasks
For an analog output task, the engine provides the adaptor with a buffer of
data whenever the adaptor calls GetBuffer. The ValidPoints field informs the
adaptor how many points in the buffer should be sent to the hardware device.
Once the adaptor finishes with the buffer, the buffer must be sent back to the
engine using PutBuffer.

If the BUFFER_IS_LAST flag is set in the buffer, stop the output task after
sending that buffer’s ValidPoints to the hardware.

Buffering with Trigger Repeat
When trigger repeats are used, the engine does not set the BUFFER_IS_LAST flag
of the buffer structure until the acquisition has repeated the required number
of times. For example, a 1000 sample analog input task with TriggerRepeat
set to 1 continues until 2000 samples have been retrieved.

Understanding Engine Buffers
Dealing with Analog Output Out Of Data Mode
The OutOfDataMode property of analog output subsystems defines what should
happen to the analog output signal when the task ends: Either the value should
be held (OutOfDataMode set to Hold) or the default value for the channel must
be sent to the device (OutOfDataMode set to Default). The output task should
send the correct value to the hardware prior to stopping acquisition. Because
the device might queue data in a hardware buffer, you should ensure that the
OutOfDataMode values get to the physical device before stopping the
acquisition. Typically, this involves repeating the OutOfDataMode value many
times. The Keithley adaptor demonstrates this behavior (see the LoadData
method of the analog output subsystem).
5-5

5 Buffering Techniques

5-6
Implementing Buffering in Your Adaptor
Before implementing buffering in your adaptor, you should consider the type of
buffering and event notification supported by your device driver. The following
sections discuss direct buffering and circular buffering techniques. Although
other forms of intermediate buffering exist, this adaptor kit recommends using
circular buffers for intermediate buffering.

Direct Buffering
Direct engine-driver buffering is by far the simplest form of buffering to
implement. In this form of buffering, data is passed directly between the engine
buffers and the device driver buffers. The Keithley and Winsound adaptors
implement direct buffering.

Direct buffering requires the following support from the hardware device
driver:

• You can define the buffer size for your device driver (otherwise, you cannot
match the engine buffer size with the device driver buffer size).

• Your driver implements multiple buffers, or allows you to provide pointers to
multiple blocks of memory — the engine can provide noncontiguous memory
between each buffer, or

• You are prepared to implement a timer-based checking mechanism, and you
can query the number of samples acquired (or output) by the device and can
request a variable number of samples from the device.

If any of these conditions is not met, you might have trouble implementing
direct buffering, and should consider using circular buffering instead.

For an example of direct buffering, see the Keithley or Winsound adaptors.

The basic points to consider when implementing direct buffering are as follows.
Note that in this discussion, analog input acquisition is discussed; for output,
simply replace acquisition with output:

• You can use the engine’s GetBufferingConfig method to obtain the current
engine buffer size (in samples).

• You should ensure that your device driver can acquire data for at least two
engine buffers (more buffers are recommended, particularly for high sample

Implementing Buffering in Your Adaptor
rates). This allows you to transfer data out of one buffer while the driver
queues data to another location.

• Your adaptor should be able to detect when a buffer has been filled by the
driver, either through driver callbacks (on buffer filled, or on every N
samples) or through a timer routine that operates at least twice as fast as a
buffer of data is filled.

• When your adaptor detects that a buffer has been acquired, you should call
GetBuffer and transfer the raw data values directly from the device driver
into the engine buffer.

• For analog input, you should always check that a valid buffer has been
provided by the engine. If the buffer structure is returned as NULL, you
should stop acquisition immediately.

• For analog output, you should be careful of the device’s hardware FIFO
buffer. Many device drivers indicate driver status, and not necessarily the
sample that has been output by the hardware. You should therefore queue
FIFO more samples than the engine indicates before stopping the acquisition
task.

The following code is an extract from the Keithley adaptor showing the
handling of the buffer filled message (from the ReceivedMessage method):

if (m_daqStatus == STATUS_RUNNING)
{

BUFFER_ST * pBuffer;
_engine->GetBuffer(0, &pBuffer);
if (pBuffer==NULL)
{

double triggerrep = pTriggerRepeat;
if(m_samplesThisRun < (pSamplesPerTrigger *

(1 + triggerrep)))
{

_engine->DaqEvent(EVENT_DATAMISSED, -1,
m_samplesThisRun,NULL);

return;
}
mustStop = true;

}
else
{

5-7

5 Buffering Techniques

5-8
samplesToFetch = pBuffer->ValidPoints/_nChannels;
// Get the Data from DriverLINX.
GetDriverLINXAIData(m_pSR,

(unsigned short*) pBuffer->ptr,
bufIndex, _nChannels, samplesToFetch);

ResultCode = GetDriverLINXStatus(m_pSR, Status, Length);
if (ResultCode != 0)
{

_engine->WarningMessage(
TranslateResultCode(ResultCode));

mustStop = true;
}
else
{

// The conversion worked, now send the data to MATLAB
long pointsPerBuffer = m_engineBufferSamples *

_nChannels;
pBuffer->StartPoint = m_samplesThisRun * _nChannels;
m_samplesThisRun+=samplesToFetch;

// Set the number of valid points in this buffer
pBuffer->ValidPoints = samplesToFetch * _nChannels;
if ((pBuffer->Flags & BUFFER_IS_LAST) ||

(pBuffer->ValidPoints < pointsPerBuffer))
mustStop = true;

_engine->PutBuffer(pBuffer);
if (m_triggering && (pTriggerType==TRIGGER_HWDIGITAL)

&& !m_triggerPosted)
{

m_triggering=false;
m_triggerPosted = true;
_engine->GetTime(&time);
triggerTime = time -

m_engineBufferSamples/pSampleRate;
_engine->DaqEvent(EVENT_TRIGGER, triggerTime,

pSamplesPerTrigger*m_triggersProcessed,
NULL);

m_triggersProcessed++;
}

}

Implementing Buffering in Your Adaptor
}
if (mustStop)

Stop();
}

Intermediate Buffering
Intermediate buffering consists of the adaptor’s temporarily storing data
internally when transferring between the engine and the device driver.
Intermediate buffering has the following advantages:

• By providing an intermediate storage layer between the engine and the
device driver, you do not need to ensure that the driver provides data in
engine-buffer-sized chunks.

• Intermediate storage allows you to convert data between proprietary formats
and the native data type defined by your adaptor.

• If you decide to implement circular intermediate buffering, you can transfer
irregular sizes of data between the hardware device driver and your
intermediate buffer. This makes implementation of the adaptor code robust
to changes in operating system loading.

Intermediate buffering is common, only because implementation of
intermediate buffering is more flexible than direct buffering discussed
previously. Hence, developers of a variety of adaptors might prefer
intermediate buffering techniques.

You should consider the following points when implementing intermediate
buffering:

• Ensure that the total buffer space is large enough to handle continuous
acquisition to or from the engine buffers. Typically this means making the
intermediate buffers at least three to four times larger than the engine
buffers.

• When using polled acquisition, ensure that the data transfer is polled often
enough, or that timer routines execute callbacks often enough, so that data
transfer can take place between the circular buffer and both the engine and
the device driver in a timely way. Typically, polled acquisition should check
the acquisition status at least twice per engine buffer transfer.

• Try to pass data to and from the engine as soon as it is available in your
buffer, and not when two or three engine buffers need to be transferred. This
5-9

5 Buffering Techniques

5-1
ensures that the engine can provide information to the user as soon as
possible, and you do not need to store data in your adaptor for too long.

Circular Buffering: Using cirbuf.h
Circular buffering involves acquiring data into a single contiguous memory
space, with older data being overwritten when the buffer is full and newer data
becomes available. Circular buffers require two pointers: a write pointer, which
writes data into the circular buffer, and a read pointer, which reads data from
the buffer. The pointers must be specially implemented, as they have to know
to wrap back to the beginning of the buffer when they reach the end. As long as
the read pointer does not overlap the write pointer, no data is lost.

Circular buffers are the most common form of intermediate buffering in the
Data Acquisition Toolbox, owing to the flexibility of circular buffering,
particularly in supporting multiple types of device driver implementation. The
Adaptor Kit therefore provides an implementation of circular buffers that
should be used in an adaptor that implements circular buffers.

Circular buffers are defined in the cirbuf.h header file provided in the
include directory of the source code for the adaptors shipped with the Data
Acquisition Toolbox. You can find the include directory in
$MATLAB\toolbox\daq\daq\src.

The following implementation details describe how to use the Circular Buffer
template class provided in cirbuf.h (search for _CircBuff in the
ComputerBoards adaptor source for implementation examples):

• Define the buffer using the TCircBuffer template, using the native data
type defined by the adaptor.

• In the Start method, initialize the buffer using the Initialize method,
passing the size of the buffer in points.

• Use the GetPtr and GetBufferSize methods to obtain the pointer location
and size of the buffer. These values can be passed directly to device drivers
that assume circular buffering in their implementations of continuous
acquisition.

• The ValidData method returns the number of valid points in the buffer.

• Use the CopyIn method to transfer data to the buffer. Pass a pointer to the
data to be copied and the number of points to transfer.
0

Implementing Buffering in Your Adaptor
• Use the CopyOut method to copy data out of the buffer. Pass a pointer to the
location to copy data to, and the number of points to copy out of the buffer.

• You can set the write location to a particular value by passing a pointer or a
position to SetWriteLocation.

• You can query the space available in the buffer by calling the FreeSpace
method.

• To check for overruns, use the IsWriteOverrun method, passing the number
of points you want to write to the buffer.

For a full implementation of circular buffers, see the ComputerBoards and
Nidaq adaptors.

Implementing Other Intermediate Buffering
Other types of buffers can provide performance advantages over circular
buffers. For example, ping-pong buffers (where data is transferred between
alternating buffers) might provide a simpler implementation than circular
buffering, because buffers are a defined size and data does not wrap around the
buffer. Other types of buffering include multiple buffering (the extension of
ping-pong buffers to multiple buffers) and threaded buffering. Note, however,
that circular buffering can be configured to look like almost any other type of
buffering.
5-11

5 Buffering Techniques

5-1
2

Monitoring Progress of Acquisition Tasks 6-3
Event Messaging from Device Drivers 6-3
Polling the Driver for Acquisition Status 6-4

Threading Your Adaptor’s Task Monitoring Methods . 6-6
Implementing Callbacks in a Separate Thread 6-6
Implementing Event Messaging in a Separate Thread . . . 6-7
Implementing Polling in a Separate Thread 6-8
6

Callbacks and Threading

Overview . 6-2

6 Callbacks and Threading

6-2
Overview
This chapter discusses how to handle data transfer between continuous
acquisition tasks and the engine.

Many device drivers provide some mechanism for notification of events in a
continuous task. Other device drivers only provide an indication of the current
sample being acquired or output from their internal buffers. The Data
Acquisition Toolbox expects to receive or send data in relatively small buffers.
These buffers are small to enable additional information such as triggers and
progress notification to be handled rapidly by the Data Acquisition Toolbox.
For example, a MATLAB user might want to know when every 1024 samples
of an acquisition have taken place, so that the data can be extracted and an
FFT calculated on that new data.

As an adaptor developer, you must be able to monitor the progress of an
acquisition task, so that you can provide acquired data to the engine as fast as
possible, send more data to the hardware device in the case of analog output
tasks, and provide event notification to the engine. This progress monitoring
must not be blocked by any other process, including MATLAB. Hence,
monitoring of continuous acquisition tasks typically requires the
implementation of a separate thread to handle that monitoring task.

This chapter discusses types of progress monitoring, and leads on to the
implementation of threads in your adaptor. The problem of monitoring the
progress can be broken into three distinct areas:

1 The manner in which your device driver implements progress monitoring
dictates one of three general progress monitoring schemes that your adaptor
implements.

2 The format in which the device driver returns information dictates how you
implement the progress monitoring.

3 The outcomes of the first two areas provide an idea of how to thread the
progress monitoring task to ensure that MATLAB does not block acquisition
tasks.

Monitoring Progress of Acquisition Tasks
Monitoring Progress of Acquisition Tasks
Hardware device drivers that provide continuous acquisition capabilities must
provide some mechanism for the program initiating those tasks to obtain
information on the progress of the task. Typical progress messages include
notification about the current position of the acquisition task (how many
samples the analog input task has acquired, or how many samples the analog
output task has sent to the hardware device) and other information such as
data overrange errors, device driver buffer overruns, triggers, and hardware
device errors.

Typically, two types of progress monitoring are implemented: synchronous
notification (i.e., after every N samples) through callbacks or messaging, and
asynchronous, or polled, acquisition status notification.

Event Messaging from Device Drivers
Device drivers that implement event messaging are often easier to implement
than polled drivers. One major reason is that your adaptor can be notified
whenever an engine buffer has been processed. Hence, the overhead in
monitoring the status of an acquisition task is minimal. However, not all
drivers provide this mechanism.

Callback-type drivers provide a mechanism for executing a particular callback
each time the driver has finished processing a defined number of samples. For
example, the Nidaq adaptor uses the Nidaq event message handler to run a
callback function whenever the driver has completed sending or sampling an
engine buffer’s worth of samples. The callback function can then queue more
data, or, in the case of a special event from the device driver, stop acquisition
or register nonfatal events (such as overrange errors) with the Data
Acquisition Toolbox.

Drivers can also use window message handling techniques to notify the calling
application of the progress of an acquisition task. For instance, the Keithley
driver posts window messages to a window handle that is registered when your
application first calls the DriverLINX driver. The driver then posts Buffer
Filled messages when it has finished using an internal buffer, and the
application is then free to reuse the buffer (either to fetch data from the buffer,
or to put more data into that buffer).

If your adaptor supports synchronous event messaging, either through
callbacks or through window messaging, you should configure the messages to
6-3

6 Callbacks and Threading

6-4
be posted each time the driver handles an engine buffer’s worth of data. This
minimizes the buffering logic within your adaptor.

A typical implementation of synchronous message handling can be found in the
Keithley adaptor’s ReceivedMessage method, and in the Nidaq adaptor’s
Callback method. These methods are implemented for both analog input and
analog output subsystems.

Polling the Driver for Acquisition Status
If your adaptor does not provide synchronous callbacks, you can almost
certainly poll the driver for the status of an acquisition task. Typically,
information that might be returned from such a polling request would include
information on the number of samples processed, as well as any errors that
might have occurred with the task, such as buffer overruns, data overrange
warnings, and other error messages. The Data Acquisition Toolbox should be
notified of these events as soon as possible after they happen.

Note If your driver supports neither polled nor synchronous messaging, then
you cannot use continuous sampling, and must resort to using software
clocking for your acquisition task.

Polling typically requires a little more work from your adaptor than
synchronous event messaging. Typically, you need to set up your own polling
mechanism for querying the status of an acquisition task frequently.
Unfortunately the Windows operating system is not a hard real-time system,
so you cannot be guaranteed that your polling task will execute exactly on time
every time. However, if you design the polling system adequately, and
implement sufficient buffering within your adaptor, you can handle latencies
that polling requests and other tasks running on the system impose on your
adaptor.

Polling should be implemented as follows:

• Use a Windows Timer routine to poll the driver for task status. This routine
should occur more frequently than the transfer of a single engine buffer to
the driver (typical implementations execute the timer routine twice per
buffer transfer to ensure minimal latency).

Monitoring Progress of Acquisition Tasks
• Each time the driver has transferred an engine buffer’s worth of data,
transfer another buffer from the engine to your internal buffer.

• If there is sufficient space left in your driver’s buffer, queue more data (or
fetch more data) from the driver buffer to your adaptor buffer.

• In the event of an error or warning, send an event notification to the engine,
using the most recent sample count from the driver for timing information.

From the preceding discussion it is clear that polled acquisition requires the
use of an intermediate adaptor buffer. Without the intermediate buffer the
buffering routine would become too complex to manage and implement
adequately.

Although polling routines can be more difficult to implement, there is one
positive benefit of using polling: The Windows Timer routines are
automatically multithreaded, which makes implementation of a separate
thread for task monitoring easier to implement.

For an example of polled acquisition, see the TimerRoutine method in the
Winsound adaptor or the GetScanData method in the Analog Input subsystem
of the ComputerBoards adaptor.
6-5

6 Callbacks and Threading

6-6
Threading Your Adaptor’s Task Monitoring Methods
Your adaptor runs in the same process space as MATLAB’s normal operations.
During an acquisition task, MATLAB might be asked by the user to perform
some other processing, such as visualizing previously acquired data, or
performing some analysis on other data.

Some device drivers implement callbacks in a separate thread. In this instance
you do not have to explicitly perform any threading yourself, although your
adaptor code should be thread safe in this instance.

You might decide in the development of your adaptor that you will not
implement threading. If this is the case, you should be aware that the following
problems will arise:

• Because MATLAB should not interrupt the adaptor’s task, you lose the
support of all event callbacks (such as TriggerFcn, SamplesAcquiredFcn,
etc.). This means that your adaptor can never perform analysis while an
acquisition task is running.

• Your adaptor cannot block MATLAB’s processing, as the engine performs
nonblocking calls to the adaptor’s methods.

• If MATLAB code is run while a task is executing, the task might lose data.

As long as you are prepared to accept the limitations listed above, you do not
need to worry about threading your adaptor. In the event that you need the
preceding functionality, you might need to implement threading of the
adaptor’s callback functions.

Threading can be implemented after the fact. Typically, getting the adaptor
working in a single thread is easier than debugging threading and adaptor
implementation simultaneously. However, if you know that threading is
required, you should implement the threading code when implementing the
callback functionality.

The following sections discuss how to thread your adaptor based on the task
monitoring your device driver supports.

Implementing Callbacks in a Separate Thread
Many device drivers run callbacks in their own threads, effectively providing
you with multithreaded capabilities without requiring any code in your

Threading Your Adaptor’s Task Monitoring Methods
adaptor. The nidaq and hpe1432 adaptors provide an example of direct
threaded callback support.

If your driver does not support callbacks in a separate thread, you must
implement threading in the adaptor. Depending on your device driver
implementation, this might require you to start the task execution in the
separate thread. Consult your device driver API documentation for details on
how your device driver supports multithreaded applications.

Implementing Event Messaging in a Separate
Thread
Event messaging takes place through standard Windows event handlers. In
order to implement threading for such device drivers, you need to create the
window receiving all the event messages in a separate thread, and implement
a message processing function that handles all driver messages as well as other
standard window messages, such as close messages.

The thread you create should be as lightweight as possible, to avoid consuming
valuable processor time while an acquisition task is running. A suitable thread
processing algorithm is given (modified from the Keithley adaptor to aid in
readability):

unsigned WINAPI MessageWindow::ThreadProc(void* pArg)
{
 MSG msg;
 try
 {

CoInitialize(NULL);
MessageWindow* thisptr=(MessageWindow*) pArg;
thisptr->CreateMyWindow();
// Code to open device drivers in this thread
thisptr->OpenDriverLINXDriver(boardName, &hinst);
thisptr->_windowEvent.Set();
// Main message loop:
while (!thisptr->_isDying)
{

GetMessage(&msg, NULL, 0, 0);
TranslateMessage(&msg);
DispatchMessage(&msg);

}

6-7

6 Callbacks and Threading

6-8
CloseDriverLINX(boardName);
CoUninitialize();

 }
 catch (...)
 {

_RPT0(_CRT_ERROR,"***** Exception in Keithley
Thread Terminating Thread\n");

 }
 return 0;
}

The algorithm can be summarized as follows:

• Create the window to handle all messaging.

• If required, open your device driver (the Keithley adaptor requires this step).

• Loop until the thread is asked to quit by the adaptor’s closing, calling
GetMessage and DispatchMessage methods in the loop. (Note: GetMessage is
a lightweight blocking call, and puts the thread into idle priority until a
message is sent to the thread or the thread’s windows.)

• When the loop exits, close the device driver if necessary.

For an implementation of event message threading, consult the Keithley
adaptor class. Typically, messaging should be installed in the adaptor class, as
it is required by the analog input and analog output classes, and the code is
almost completely repeated. The only exception is that the specific message
handling code should be able to call the appropriate analog input or analog
output message-handling routines (see ReceivedMessage in the analog input
and analog output classes of the Keithley adaptor).

Implementing Polling in a Separate Thread
Polling in a separate thread typically involves using a timer to initiate periodic
calls to the device driver. For the adaptor that has used this mechanism to date
(the ComputerBoards adaptor), the Windows Multimedia Timer functions have
provided this functionality. The Windows Multimedia Timer functions
automatically implement the callback in a separate thread, and so you should
not need to explicitly thread your callback. You can access these functions
using the TTimerCallback template included with the Adaptor Kit.

Threading Your Adaptor’s Task Monitoring Methods
The TTimerCallback template defines an object with the following methods.

On construction of your analog input or analog output object, you should
construct the TTimerCallback object, passing the current object as the
parameter.

For an example of using the Windows Multimedia Timer for polling, see the
GetScanData method of the ComputerBoards adaptor.

Method Description

CallPeriod Defines the time in seconds between callback execution

Stop Stops the timer

TimerRoutine Method in object passed to TTimerCallback that
implements the callback
6-9

6 Callbacks and Threading

6-1
0

ImwDevice . A-3

ImwAdaptor . A-10

ImwInput . A-15

ImwOutput . A-18

ImwDIO . A-19
A

Adaptor Kit Interface
Reference

Overview . A-2

A Adaptor Kit Interface Reference

A-2
Overview
Every adaptor DLL that communicates with the data acquisition engine must
implement a subset of the following COM interfaces:

• ImwDevice
• ImwAdaptor
• ImwInput
• ImwOutput
• ImwDIO

Of these interfaces, only ImwDevice and ImwAdaptor are required.
Implementation of the remaining interfaces depends on the functionality
provided by your adaptor.

This chapter provides detailed descriptions for all the methods declared by
these adaptor kit interfaces. The methods are shown in their appropriate
formats and with appropriate return types. The method descriptions use a
quasi COM notation that uses the attributes [in], [out], and [in,out] to
denote input, output, and input/output parameters, respectively. An input
parameter is passed by a caller and is not changed by the method being called.
An output parameter is assigned by the method and returned to the calling
procedure. An input/output parameter combines both properties.

ImwDevice
ImwDevice
The ImwDevice interface serves as a base for classes that implement generic
device functionality common to all data acquisition devices. ImwDevice declares
the methods given below.

AllocBufferData

Syntax
HRESULT AllocBufferData([in, out] BUFFER_ST *Buffer)

Description
The AllocBufferData method allocates requested memory for a data buffer.
The data buffers are used for transferring data between the engine and the
adaptor. For analog input, a buffer filled with data is transferred from the
adaptor to the engine using the IDaqEngine method PutBuffer. An empty
buffer is transferred to the adaptor from the engine using the IDaqEngine
method GetBuffer.

For analog output, a buffer containing data is transferred to the adaptor with
GetBuffer, and the emptied buffer is returned to the engine with PutBuffer.

Table A-1: ImwDevice Methods

Method Purpose

AllocBufferData Allocate requested memory for a data buffer.

FreeBufferData Free the data field of a buffer.

SetChannelProperty Configure the specified channel property.

SetProperty Configure the specified device property.

Start Initialize a data acquisition process.

Stop Stop data acquisition process.

GetStatus Determine the number of samples acquired, or the
number of samples output.

ChildChange Add, delete, or reindex a channel or line.
A-3

A Adaptor Kit Interface Reference

A-4
A single argument of the type pointer to the BUFFER_ST structure is used as
both the input and output parameter. On the call to the function, the size of the
requested buffer is passed to the function as the value of the size field of the
Buffer parameter. On return, the pointer to the newly allocated data array is
returned as the *ptr field of the Buffer parameter.

The structure BUFFER_ST is defined in the file daqmex.idl. It is described in
detail in the PeekData method.

The function AllocBufferData has a default implementation in the class
CmwDevice, defined in the files AdaptorKit.h and AdpatorKit.cpp. Normally,
it does not need to be modified by the adaptor programmer.

FreeBufferData

Syntax
HRESULT FreeBufferData([in, out] BUFFER_ST *Buffer)

Description
The FreeBufferData method frees the data field of a buffer. The function is
called by the engine to deallocate memory that was previously allocated for the
data array of the buffer. It frees the memory belonging to the *ptr field and
sets the size field of the buffer to 0.

This function is implemented in the class CmwDevice, and normally should not
be redefined for specific adaptors.

SetChannelProperty

Syntax
HRESULT SetChannelProperty([in] long user, [in] NESTABLEPROP
*pChan, [in,out] VARIANT *NewValue)

Description
The SetChannelProperty method configures the hardware for a new value of
the specified channel property. It is called by the engine after you call the
toolbox set function. For example, to configure the SensorRange property for
the first channel added to the analog input object ai using the set function

set(obj.Channel(1),'SensorRange',[-1 2])

ImwDevice
After you issue the set function, the engine must determine whether to pass
the property value to the adaptor. If you attempt to assign to a property the
same value it already has, the SetChannelProperty function is not called by
the engine.

The adaptor does not have to be notified about all property changes. Some of
these changes have no bearing on the hardware and should not be
communicated to the adaptor. In such cases, the set function is processed
entirely by the engine. An example of such a property is ChannelName. When
the adaptor needs the engine to call the SetChannelProperty function for a
given property, it must register this property. This is accomplished by calling
the function put_User, which is declared by the engine interface IPropRoot.

Parameters

• user — Address of the property, which was communicated to the engine
when it was registered with the put_User function.

• *pChan — A pointer to the structure containing the information about the
channel whose property is being modified.

• *NewValue — A pointer to a new value to be assigned to the property.
Because its type is VARIANT, it can accommodate any data type, such as
strings, arrays, or simple types. The requested new value is passed to this
parameter, and the actual value (which might not coincide with the
requested value because of hardware limitations) is returned to the engine
via this parameter. Therefore it is qualified as [in,out].

SetProperty

Syntax
HRESULT SetProperty([in] long user, [in,out] VARIANT *NewValue)

Description
The SetProperty method configures the hardware for a new value of the
specified device property. It is called by the engine after you call the toolbox set
function. For example, to configure the SampleRate property for the analog
input object ai using the set function

set(ai,'SampleRate',1000)
A-5

A Adaptor Kit Interface Reference

A-6
After you issue the set function, the engine must determine whether to pass
the property value to the adaptor. If you attempt to assign to a property the
same value it already has, the SetProperty function is not called by the engine.

The adaptor does not have to be notified about all property changes. Some of
these changes have no bearing on the hardware and should not be
communicated to the adaptor. In such cases, the set function is processed
entirely by the engine. An example of such a property is Name. When the
adaptor needs the engine to call the SetProperty function for a given property,
it must register this property. This is accomplished by calling the put_User
function, which is declared by the engine interface IPropRoot.

Parameters

• user — Address of the property, which was communicated to the engine
when it was registered with the put_User function.

• *NewValue — A pointer to a new value to be assigned to the property.
Because its type is VARIANT, it can accommodate any data type, such as
strings, arrays, or simple types. The requested new value is passed to this
parameter, and the actual value (which might not coincide with the
requested value because of hardware limitations) is returned to the engine
via this parameter. Therefore it is qualified as an [in,out] parameter.

Start

Syntax
HRESULT Start()

Description
The Start method initializes the data acquisition process and sets the Running
property to On. Depending on the object on which it is called, the process can be
associated with analog input, analog output, or digital input/output. The
function is called by the engine as a response to the toolbox start function.

The function takes no arguments. For all adaptors that use software clocking,
Start has adequate default implementation as defined in the file
AdaptorKit.cpp, and should not be redefined. However, for adaptors that use
onboard hardware clocks, Start must be overridden within the derived adaptor

ImwDevice
classes. For example, for the demo adaptor (presuming it used hardware
clocking), it could be redefined in the file demoin.cpp inside the class Cdemoin.

For analog input and analog output, it is the Trigger function that actually
starts the acquisition process. In most cases, the engine calls Trigger
immediately after calling Start.

Stop

Syntax
HRESULT Stop

Description
The Stop method stops a data acquisition process and sets the Running
property to Off. It can be called by the engine after you issue the toolbox stop
function. For analog input objects, Stop is called internally by the adaptor
when the last available buffer has been filled. The adaptor must then post a
stop event using the DaqEvent method of the IDaqEngine interface.

The function takes no arguments. By default, it is defined in the
AdaptorKit.cpp file and is adequate as implemented for all adaptors that use
software clocking. For adaptors that use onboard hardware timers, Stop must
be overridden inside classes derived from CmwDevice.

GetStatus

Syntax
HRESULT GetStatus([out] hyper *samplesProcessed, [out] BOOL
*running)

Description
The GetStatus method is called by the engine to determine the number of
samples acquired (analog input) or the number of samples output (analog
output). This method also informs the engine whether the hardware is
currently running.

The current implementation of the engine only calls GetStatus for analog
output.
A-7

A Adaptor Kit Interface Reference

A-8
Parameters

• *samplesProcessed — A pointer to the number of samples that have been
output by the time of the query.

• *running — A pointer to the Boolean value, indicating whether the device is
running. True if running, false otherwise.

ChildChange

Syntax
HRESULT ChildChange([in] DWORD typeofchange, [in,out] NESTABLEPROP
*pChan)

Description
The engine calls the ChildChange method when a channel or a line is added,
deleted, or reindexed. These processes are initiated when you use the toolbox
functions addchannel, delete, or set, respectively.

Parameters

• typeofchange — Indicates why the function is called. This parameter takes
five valid values of an enumerated type, which are defined in the file
DaqmexStructs.h. The values are given below.

The last two values are used as a mask, which can be ORed with any of the
first three values. Thus, the engine can call ChildChange with requests to
execute different stages of the channel change process. With the

Action Value

ADD_CHILD 1

REINDEX_CHILD 2

DELETE_CHILD 3

START_CHANGE 256

END_CHANGE 512

ImwDevice
START_CHANGE mask, the engine calls the part of the code that should be
executed before the channel is added, deleted, or reindexed. With the
END_CHANGE mask, the engine calls the part of the code that must be executed
after the channel (or line) change.

• *pChan — A pointer to the structure of the type NESTABLEPROP, containing the
information about the channel that is being deleted, added, or reindexed.

The NESTABLEPROP structure is defined in the file DaqmexStructs.h. This
parameter is used by the engine as an [in] parameter to send the channel
information to the adaptor. The adaptor then returns this information to the
engine after modification, using the parameter as an [out] parameter.
A-9

A Adaptor Kit Interface Reference

A-1
ImwAdaptor
The ImwAdaptor interface is responsible for opening a specified function of the
physical device and establishing the communication between the DLL and the
engine on behalf of this function. Additionally, it supplies the engine
information about the particular device via the MATLAB function daqhwinfo.
ImwAdaptor declares the methods given below.

AdaptorInfo

Syntax
HRESULT AdaptorInfo([in] IPropContainer * Container)

Description
The AdaptorInfo method is called when you call the toolbox daqhwinfo
function with the adaptor name as an input. For example, to return adaptor
information for the demo adaptor, you issue the command daqhwinfo('demo').

daqhwinfo returns certain property values from the hardware driver and uses
this information to modify the special property structure. The associated
properties are shown below.

Table A-2: ImwAdaptor Methods

Method Purpose

AdaptorInfo Return information associated with the specified
adaptor.

OpenDevice Construct an instance of an adaptor and initialize the
hardware device.

TranslateError Translate error codes into readable error messages.

Table A-3: Adaptor Properties Returned by daqhwinfo

Property Name Data Type Description

AdaptorName BSTR Name of the adaptor

AdaptorDllName BSTR Full path name of the adaptor DLL
0

ImwAdaptor
The ObjectConstructorNames property is an array of strings, where every
string is one possible command to open the device. There is one string for each
subsystem (analog input, analog output, or digital I/O) supported by the board.
If a board does not support a particular subsystem, the corresponding strings
are empty. For example, the ObjectConstructorNames property values for the
winsound adaptor are shown.

info = daqhwinfo('winsound');
info.ObjectConstructorNames
info.ObjectConstructorName(:)
ans =
 'analoginput('winsound',0)'
 'analogoutput('winsound',0)'

You now know what commands you can issue to construct all possible objects
for the winsound device. You can also use MATLAB’s eval command to
construct objects programmatically. For example:

eval(['hAI = ', info.ObjectConstructorName{1}])

AdaptorInfo uses the pointer to the IPropContainer interface (passed by the
engine as a single parameter) to call the put_MemberValue method to modify
the structure. For example:

AdaptorDllVersion BSTR Revision of the adaptor DLL

BoardIds BSTR array IDs of the hardware devices
installed in the computer

BoardNames BSTR array Names of the hardware devices of
the specified type installed in the
computer

ObjectConstructor
Names

BSTR array The array of all possible MATLAB
commands that can construct all
installed hardware devices of the
specified type

Table A-3: Adaptor Properties Returned by daqhwinfo (Continued)

Property Name Data Type Description
A-11

A Adaptor Kit Interface Reference

A-1
hRes = Container->put_MemberValue(L"adaptordllname",
CComVariant(name));

The approach you should use to implement the AdaptorInfo function depends
on the complexity of the adaptor DLL you are building. The implementation
given in the demo adaptor example (as well as any adaptor based upon it)
automatically correctly loads the first two fields of the DAQHWINFO
structure: AdaptorName and AdaptorDllName. The third field,
AdaptorDllVersion, is loaded by the engine based on the following line in the
resource file demo.rc:

VALUE "FileVersion", "<******>\0".

This line is located in the block StringFileInfo. You should replace
"<******>" with a string that reflects the version number.

The information for the other three fields is not as readily available. There are
two possibilities for their realization, depending on your goal:

• For a simple adaptor that is associated with only one type of hardware
device, this information can be hard coded. This approach is employed in the
demo adaptor.

• If the adaptor DLL is intended to communicate with a variety of devices
sharing the same hardware driver, you must use the API calls provided by
the driver. Once this information is obtained, it is communicated to the
engine with a call to put_MemberValue. For an example of this
implementation, refer to the AdaptorInfo function in the winsound adaptor.

The sole purpose of the AdaptorInfo function is to present information to the
user. It is not used by the engine internally and is called only as a response to
your requests. This is the way you obtain information about the installed
hardware as well as the adaptors. Prior to using this method, you must register
the adaptors of interest, and the hardware drivers for the data acquisition
boards must be installed.

OpenDevice

Syntax
HRESULT OpenDevice([in] REFID DevIID, [in] long nParams, [in]
VARIANT *Param, [in] REFID EngineIID, [in] IUnknown *pEngine, [out]
void **ppIDevice)
2

ImwAdaptor
Description
The OpenDevice method constructs an instance of an adaptor and initializes
the hardware device. Additionally, it makes the engine and the adaptor
exchange pointers, which enables subsequent calls to each other’s methods.

OpenDevice is called by the engine when you request the construction of a data
acquisition object. For example, it is called when you issue the
analoginput('demo',1) command. OpenDevice then calls the Open function,
which communicates with the hardware (via the driver API), performs the
actual initialization of the hardware, and sets up adaptor properties if
necessary.

Parameters

• DevIID — Identifier of the interface, an instance of which is being
constructed by this call. For example, interface ImwInput, instantiated by the
Cdemoin class.

• nParams — Number of input parameters associated with object construction,
not including the adaptor name. For example, for the command
analoginput('demo',0), the value of nParams is 1 because there is one
parameter (the 0) specified after the adaptor name. For the command
analogoutput('winsound'), nParams is 0.

• *Param — An array of input parameters associated with object construction,
not including the adaptor name. Using the first example given above for
nParams, the *Param array contains one value of 0. For the second example
given above, the array is empty. The array type is VARIANT.

• EngineIID — The reference to the IID of the engine interface IDaqEngine.

• *pEngine — The pointer to the engine interface. The engine passes this
pointer to the adaptor to enable it to call the engine functions. This
parameter needs to be stored within the adaptor as a data member of one of
its classes. In current adaptor implementations, it is saved as a data member
of the CmwDevice class, which implements the ImwDevice interface of the
adaptor.

• *ppIDevice — The pointer to a pointer to a newly constructed device. It is
the only [out] parameter of this method. It is returned to the engine to
enable it to call the adaptor component methods and functions. It is stored
internally to the engine for the duration of the adaptor object’s life.
A-13

A Adaptor Kit Interface Reference

A-1
TranslateError

Syntax
HRESULT TranslateError([in] HRESULT eCode, [out] BSTR *retVal)

Description
The TranslateError method is called by the engine to translate error codes
into readable error messages. Therefore, any nonzero error code from the
hardware driver API is used by the engine to display a meaningful text error
message.

Parameters

• eCode — The numeric code of an error message.

• *retVal — The pointer to the error message in a text format (type BSTR).
4

ImwInput
ImwInput
The ImwInput interface serves as a base for the class that implements adaptor
functionality specific to analog input. It publishes the following three methods
to be implemented by the derived class.

GetSingleValues

Syntax
HRESULT GetSingleValues([out] VARIANT *Values)

Description
The GetSingleValues function is called by the engine to collect an array of data
samples from all channels added to the adaptor device. The engine calls it when
you issue the toolbox function getsample. For example, Sample =
getsample(ai) returns a vector that contains one sample from all channels
added to the analog input object ai. The size of the vector equals the number
of added channels. The array of data points (one data sample) is returned to the
engine by the single parameter of the function GetSingleValues function. The
*Values parameter is a pointer to type VARIANT.

If the adaptor device is not capable of single-sample acquisition,
GetSingleValues must return E_NOTIMPL.

PeekData

Syntax
HRESULT PeekData([in,out] BUFFER_ST *pBuffer)

Table A-4: ImwInput Methods

Method Purpose

GetSingle
Values

Return an array of data samples from all added channels.

PeekData Called by the engine when the peekdata function is issued.

Trigger Called by the engine for triggering a data input device.
A-15

A Adaptor Kit Interface Reference

A-1
Description
The PeekData function is called by the engine when you issue the toolbox
function peekdata. For example, the command data = peekdata(ai,1000)
requests the most recent 1000 samples of data. If the adaptor has not collected
the requested amount of data, the function returns all available data and
issues an appropriate warning. The data is returned to the engine via the
parameter *pBuffer, which is the pointer to the structure variable of type
BUFFER_ST supplied by the engine.

The BUFFER_ST structure is defined in the file daqmex.idl and documented in
Appendix C, “Engine Structures.” A copy is shown here for reference.

typedef struct tagBUFFER {
long Size; // in bytes
long ValidPoints; //in raw points

//(MATLAB samples is ValidPoints/channels)
[ref,size_is(Size)] unsigned char *ptr;
DWORD dwAdaptorData; //Reserved by engine for use by the adaptor
unsigned long Flags; //Flag values are defined in
unsigned long Reserved; //Reserved for future use by the engine
hyper StartPoint; //Count of points since start
double StartTime; //Start time of the buffer from daqenginetime
double EndTime; //End time of the buffer from daqenginetime
} BUFFER_ST;

Prior to calling the function, the engine assigns the requested number of data
points to Size, which is a member of the BUFFER_ST structure. On return, the
function fills the array *ptr, which is also a member of the BUFFER_ST
structure. This way, the requested data is returned to the engine.

The PeekData member function might not necessarily be fully implemented by
the adaptor. Instead it can just return E_NOTIMPL. After receiving this code as
a return, the engine calls its own version of the PeekData function. To
determine whether the adaptor has implemented PeekData, the engine calls
PeekData NULL pBuffer after device construction. An adaptor that
implements PeekData should return S_OK for this call.
6

ImwInput
Trigger

Syntax
HRESULT Trigger()

Description
The Trigger function is called by the engine for triggering a data input device.
Depending on the TriggerType property configuration, the call to the Trigger
function can be initiated in these ways:

• Explicitly by the toolbox function trigger

• Internally by the engine as a response to certain conditions or signals on the
inputs of the device

• Directly after the hardware is started (the toolbox start function is issued)

The function takes no parameters.
A-17

A Adaptor Kit Interface Reference

A-1
ImwOutput
The ImwOutput interface serves as a base for the class that implements adaptor
functionality specific to analog output. It publishes the following two methods
to be implemented by the derived class.

PutSingleValues

Syntax
HRESULT PutSingleValues([out] VARIANT *Values)

Description
The PutSingleValues function is called by the engine in response to the
toolbox putsample function. For example, putsample(ao,[1 1]) outputs a
single value to each of the two channels added to the analog output object ao.

PutSingleValues passes the output values through its *Values parameter,
which is of type pointer to VARIANT. If the hardware is not capable of
single-value output, the function returns E_NOTIMPL.

Trigger

Syntax
HRESULT Trigger()

Description
The Trigger function is called by the engine for triggering a data output device.
It works similarly to the Trigger function associated with the ImwInput
interface.

Table A-5: ImwOutput Methods

Method Purpose

PutSingle
Values

Output an array of data samples to all added channels.

Trigger Called by the engine for triggering a data output device.
8

ImwDIO
ImwDIO
The ImwDIO interface serves as a base for the class that implements adaptor
functionality specific to digital I/O. It publishes the following three methods to
be implemented by the derived class.

ReadValues

Syntax
HRESULT ReadValues([in] long NumberOfPorts, [in] long *PortList,
[out] unsigned long *Data)

Description
The ReadValues function reads the values from the specified digital ports of the
data acquisition device. Note that the ports configured for output are not
actually read. Instead, the read request returns the result of the previous write
to the port, which is cached (latched in software) by the engine. This allows you
to test the state of the previous write operation. Some boards allow lines on a
given port to be configured separately. In this case, ReadValues still reads the
whole port. However, the values obtained from the lines configured for output
are meaningless, because they reflect values latched from a previous write
operation.

The ReadValues function is called by the engine in response to the toolbox
function getvalue.

Parameters

• NumberOfPorts — The number of ports configured for reading.

Table A-6: ImwDIO Methods

Method Purpose

ReadValues Reads values from the specified digital ports.

WriteValues Write values to the specified digital ports.

SetPort
Directions

Called by the engine for triggering a data output device.
A-19

A Adaptor Kit Interface Reference

A-2
• *PortList — A list of ports, which are requested to be read by ReadValues.

• *Data — An array of data values returned from the digital I/O ports specified
in the *PortList parameter.

WriteValues

Syntax
HRESULT WriteValues([in] long NumberOfPorts, [in] long *PortList,
[in] unsigned long *Data, [in] unsigned long *Mask)

Description
The WriteValues function outputs values to the specified digital ports of the
data acquisition board. It is called by the engine when you issue the toolbox
function putsample.

Parameters

• NumberOfPorts — The number of ports configured for output.

• *PortList — A list of ports to which the function writes.

• *Data — An array of data values for output to the ports. The order of the
values must correspond to the order of the ports in *PortList.

• *Mask — An array of bit masks for the lines of the specified ports to be
written to. This parameter is used only if the ports are line configurable. For
port-configurable devices *Mask is ignored.
0

ImwDIO
SetPortDirections

Syntax
HRESULT SetPortDirections([in] long Port, [in] unsigned long
DirectionValues)

Description
This SetPortDirections function is used by the engine to set the directions of
signal lines of digital I/O ports. It is called by the engine when the direction
property is changed via the set function.

Parameters

• Port — The ID of the port to be modified by the function.

• DirectionValues — A bit mask of direction values for the lines of the port.
A 1 signifies that the line is set for output. If the port is port configurable, the
only admissible values are 0xFF for output and 0 for input.
A-21

A Adaptor Kit Interface Reference

A-2
2

IDaqEngine . B-14

IDaqEnum . . B-23

IDaqMappedEnum B-26

IPropValue . B-29

IPropContainer B-31

IChannel . B-38

IChannelList B-41
B

Engine Interface
Reference

IPropRoot . B-2

B Engine Interface Reference

B-2
IPropRoot
The methods of the IPropRoot interface allow you to configure your device
properties and channel properties. For example, there are methods for setting
a property’s default value, for setting a property’s current value, and for setting
the range of values that a property can be set to. Property methods are
generally called from within

• The adaptor’s Open method, when creating an adaptor-specific property

• The adaptor’s Open method, when changing the characteristics of an existing
property

• The adaptor’s SetProperty method, when modifying one device property
affects the property characteristics of another property

• The adaptor’s SetChannelProperty method, when modifying one channel
property affects the property characteristics of another property

Each property has its own set of interfaces. To change the characteristics of a
property, you must have a pointer to the IPropRoot interface for that property.
Any IPropRoot derived interface pointer can be obtained by

• Creating a property with the CreateProperty method of the
IPropContainer interface

• Getting an existing property with the GetMemberInterface method of the
IPropContainer interface

The CreateProperty and GetMemberInterface methods both return a pointer
to the requested interface for the property you are creating or getting. When a
property value is modified, the data acquisition engine calls the adaptor’s
SetProperty or SetChannelProperty methods.

The IPropRoot interface methods are described below.

IPropRoot
GetRange

Syntax
HRESULT GetRange(VARIANT *min, VARIANT *max)

Output Parameters

Description
The GetRange method returns the range (minimum and maximum) values that
a property can be set to. For example, the following code fragment gets the
range of the SampleRate property.

CComVariant min;
CComVariant max;
iprop->GetRange(&min, &max);

The GetMemberInterface method of the IPropContainer interface can be used
to return a pointer to the IPropRoot interface for the SampleRate property.

See Also
IPropRoot interface: SetRange

SetRange

Syntax
HRESULT SetRange(VARIANT *min, VARIANT *max)

min Variant*

max Variant*
B-3

B Engine Interface Reference

B-4
Input Parameters

Description
The SetRange method allows you to set the current minimum and maximum
values for a given property. For example, the following code fragment sets the
SampleRate property range from 8000 to 44100. This range is defined within
the Open method of the adaptor.

CComVariant min(8000.0);
CComVariant max(44100.0);
Prop -> SetRange(&min, &max);

See Also
IPropRoot interface: GetRange

GetType

Syntax
HRESULT GetType(long Type)

Output Parameters

Description
The GetType method returns the VARTYPE type for the given property.
VARTYPEs are the enumerated data types supported by VARIANT.

The lower 16 bits of Type contains the actual VARENUM. The upper 16 bits are
used for special case data types. In general, any type not contained in the
VARENUM structure is a special data type used by the engine and should not
be accessed externally. See VARENUM in the Windows header file wtypes.h
for a listing of valid types.

min Variant*

max Variant*

Type long

IPropRoot
get_DefaultValue

Syntax
HRESULT get_DefaultValue(VARIANT *Value)

Output Parameters

Description
The get_DefaultValue method returns the default value for the property. For
example, to determine the default value for the TriggerType property.

VARIANT Value;
prop->get_DefaultValue(&Value);

See Also
IDaqEngine interface: GetProperty

put_DefaultValue

Syntax
HRESULT put_DefaultValue(VARIANT *Value)

Input Parameters

Description
The put_DefaultValue method allows you to set the default value for a
property. For example, the following code fragment sets the default value for
the ChannelSkewMode property to None.

prop->ClearEnumValues();
prop->AddMappedEnumValue(0, L"None");
prop->put_DefaultValue(CComVariant(0));

Value Variant*

Value Variant*
B-5

B Engine Interface Reference

B-6
get_IsHidden

Syntax
HRESULT get_IsHidden(BOOL *IsHidden)

Output Parameters

Description
The get_IsHidden method determines whether a property is hidden from you.
Hidden properties are not displayed with the get and set displays. A hidden
property’s value can be obtained or modified only if you pass the name of the
property to the get or set toolbox function. A value of false indicates that the
property is not hidden and a value of true indicates that the property is hidden.

For example, the following code fragment determines whether the SampleRate
property is hidden.

BOOL IsHidden;
prop->get_IsHidden(&IsHidden);

put_IsHidden

Syntax
HRESULT put_IsHidden(BOOL IsHidden)

Input Parameters

Description
The put_IsHidden method allows you to hide a property from users. A hidden
property is not displayed with the get and set displays. A hidden property’s
value can be obtained or modified only if you pass the name of the property to
the get or set toolbox function. A value of false indicates that the property is
not hidden and a value of true indicates that the property is hidden.

For example, to create a hidden property called MyHiddenProperty:

IsHidden BOOL*

IsHidden BOOL

IPropRoot
pRoot->CreateProperty(L"MyHiddenProperty", NULL, &prop);
prop->put_IsHidden(true);

See Also
IPropContainer interface: CreateProperty

get_IsReadonlyRunning

Syntax
HRESULT get_IsReadonlyRunning(BOOL *pVal)

Output Parameters

Description
The get_IsReadonlyRunning method determines whether a property’s value
can be modified while the object is running. For example, the SampleRate
property cannot be modified while the object is running. However, the Tag
property can be modified whether the object is running or not. A value of false
indicates that the property can be modified while the object is running, while a
value of true indicates that the property cannot be modified while the object is
running.

For example, the following code fragment determines whether the SampleRate
property can be modified while the object is running.

bool pVal;
engine->GetProperty(L"SampleRate", &prop);
prop->get_IsReadonlyRunning(&pVal);

See Also
IDaqEngine interface: GetProperty

pVal BOOL*
B-7

B Engine Interface Reference

B-8
put_IsReadonlyRunning

Syntax
HRESULT put_IsReadonlyRunning(BOOL pVal)

Input Parameters

Description
The put_IsReadonlyRunning method allows you to configure a property so that
it cannot be set while the object is running. A value of false indicates that the
property can be modified while the object is running, while a value of true
indicates that the property cannot be modified while the object is running.

For example, the StandardSampleRates property cannot be modified while the
object is running.

pRoot->CreateProperty(L"StandardSampleRates", NULL, &prop);
prop->put_IsReadonlyRunning(true);

If you try to set the property while the object is running, you receive the
following error:

set(ai, 'StandardSampleRates', 'off')
??? Error using ==> daqdevice/set
The property: 'StandardSampleRates' is read-only while running.

The ReadonlyRunning value should not be modified for standard engine
properties. Changing this attribute can result in unpredictable behavior.

See Also
IPropContainer interface: CreateProperty

pVal BOOL

IPropRoot
get_IsReadonly

Syntax
HRESULT get_IsReadonly(BOOL *pVal)

Output Parameters

Description
The get_IsReadonly method determines whether a property’s value can be
modified by you. For example, the Type property cannot be modified. However,
the Tag property can be modified. A value of false indicates that the property
can be modified, while a value of true indicates that the property cannot be
modified and is read only.

For example, the following code fragment determines whether the
ChannelSkewMode property is read only.

bool pVal;
prop->get_IsReadonly(&pVal);

See Also
IDaqEngine interface: GetProperty

put_IsReadonly

Syntax
HRESULT put_IsReadonly(BOOL *pVal)

Input Parameters

Description
The put_IsReadonly method allows you to configure a property so that it
cannot be modified by you. A value of false indicates that the property can be

pVal BOOL*

pVal BOOL
B-9

B Engine Interface Reference

B-1
modified, while a value of true indicates that the property cannot be modified
and is read only.

For example, the following code fragment creates a property called
ReadOnlyProperty that cannot be modified.

prop->put_IsReadonly(true);

If you try to set the property, you receive the following error:

set(ai, 'ReadOnlyProperty', 4)
??? Error using ==> daqdevice/set
The property: 'ReadOnlyProperty' is read-only.

This attribute should not be set to true for standard engine properties.

See Also
IDaqEngine interface: IpropContainer->CreateProperty

get_User

Syntax
HRESULT get_User(long *User)

Output Parameters

Description
The get_User method gets the User for a property. When certain properties are
modified by you, the adaptor needs to configure the hardware appropriately.
The adaptor is notified of property value changes for any property that the
adaptor has registered with the data acquisition engine. The adaptor registers
a property by passing to the engine the address of a local data member for the
property. The address of a local data member can be stored in the User value.

When a property that has been registered by the adaptor is set by you, the data
acquisition engine calls the adaptor’s SetProperty or SetChannelProperty
method. The User value of the property is then passed to the method.

User long*
0

IPropRoot
See Also
IPropRoot interface: put_User

put_User

Syntax
HRESULT put_User(long newVal)

Input Parameters

Description
The put_User method sets the User for a property. When certain properties are
modified by you, the adaptor needs to configure the hardware appropriately.
The adaptor is notified of property value changes for any property that the
adaptor has registered with the data acquisition engine. The adaptor registers
a property by passing to the engine the address of a local data member for the
property. The address of a local data member is called a User.

For example, the following code registers the SampleRate property:

engine->GetProperty(L"SampleRate", &prop);
prop->put_User((long)&_sampleRate);

where _sampleRate is a variable that contains the current value of the
SampleRate property. To set the SampleRate property to a new value

set(obj, 'SampleRate', 11025);

When a property that has been registered by the adaptor is set by you, the data
acquisition engine calls the adaptor’s SetProperty or SetChannelProperty
method. The User value of the property is then passed to the method.

See Also
IDaqEngine interface: GetProperty
IPropRoot interface: put_User

newVal long
B-11

B Engine Interface Reference

B-1
get_Name

Syntax
HRESULT get_Name (BSTR *pVal)

Output Parameters

Description
The get_Name method allows you to determine the name of the property. This
can be useful when you are creating an error or warning message.

put_Name

Syntax
HRESULT put_Name (BSTR pVal)

Input Parameters

Description
The put_Name method sets the name of a property.

pVal BSTR*

pVal BSTR
2

IPropRoot
IsValidValue

Syntax
HRESULT IsValidValue([in] VARIANTREF value)

Input Parameters

Description
The IsValidValue function returns an error if the value is not valid, and
returns S_OK if the value is valid.

Value Value to check.
B-13

B Engine Interface Reference

B-1
IDaqEngine
The IDaqEngine interface methods provide a variety of different engine
services. For example, there are methods for creating channel properties,
posting events, and buffer management. IDaqEngine methods are generally
called from within

• The adaptor’s Open method for creating an adaptor-specific property

• The adaptor’s Open, SetProperty, or SetChannelProperty methods for
obtaining a pointer to an IPropContainer or IPropValue interface for the
property being modified

• The adaptor’s ChildChange method for obtaining an IPropContainer
interface for an existing channel

• Any adaptor method for posting warnings

• The adaptor routines for obtaining buffers of data to output or to fill with
acquired data

To execute an IDaqEngine interface method, you must have a pointer to the
IDaqEngine interface. The first step in a MATLAB data acquisition session is
to create the analog input, analog output, or digital I/O object with the
analoginput, analogoutput, or digitalio constructors. These MATLAB
functions call the data acquisition engine, which then calls the adaptor’s Open
method. The IDaqEngine interface pointer is passed from the data acquisition
engine to the adaptor’s Open method. The IDaqEngine interface pointer should
be stored as a local variable so that IDaqEngine interface methods can be
executed from other methods within the adaptor. The methods are described
below.
4

IDaqEngine
DaqEvent

Syntax
HRESULT DaqEvent(DWORD event, double time, __int64 sample, BSTR
Message)

Input Parameters

Description
The DaqEvent method notifies the data acquisition engine that an event of
interest occurred. The Event input argument is defined as the enum in
daqmexstructs.h, and can be set to one of the following values:

typedef enum {EVENT_START,EVENT_STOP,EVENT_TRIGGER,
EVENT_ERR,EVENT_OVERRANGE,EVENT_DATAMISSED,
EVENT_SAMPLESACQUIRED,EVENT_SAMPLESOUTPUT,EVENT_USER}
EventTypes;

The time of the event, the last sample acquired at the time of the event, and an
additional message can also be sent to the data acquisition engine. This
information is then posted in the object’s EventLog property. If a time value of
-1 is sent to the data acquisition engine, the engine calculates the time of the
event.

For example, once the analog output object has finished outputting data, the
adaptor is responsible for posting the Stop event.

engine->DaqEvent(STOP, -1, 8000, NULL);

From the preceding DaqEvent method call, the object’s EventLog property
would contain the following structure:

h = ao.EventLog;
h(3).Type
ans =

Event One of the enumerated values for event type.

Time The engine time of the event, or –1 to tell the engine to check

Sample The sample at which the event occurred, or –1 to state unknown

Message A description of the event. Only used for errors and user events.
B-15

B Engine Interface Reference

B-1
Stop

h(3).Data
ans =
AbsTime: [1999 4 10 13 24 10.3400]
RelSample: 8000

GetBuffer

Syntax
HRESULT GetBuffer (long Timeout, BUFFER_ST **Buffer)

Input Parameters

Output Parameters

typedef struct tagBUFFER {
long Size; // In bytes
long ValidPoints; // In raw points

// (MATLAB samples is ValidPoints/channels)
unsigned char *ptr;
DWORD dwAdaptorData; // Reserved by the engine for use by adaptor
unsigned long Flags; // Flag values are defined in
unsigned long Reserved; // Reserved for future use by the engine
hyper StartPoint; // Count of points since start
double StartTime; // Time of the start of the buffer from GetTime
double EndTime; // Time of the end of the buffer from GetTime
} BUFFER_ST;

Description
The GetBuffer method is used to pass data between the adaptor and the
engine. For analog input, GetBuffer passes an empty buffer from the data
acquisition engine to the adaptor. As data is acquired from the hardware, the
adaptor fills the empty buffer. When the buffer is full, the adaptor can send the

TimeOut Time in milliseconds to wait for a buffer.

Buffer A pointer to the returned buffer.
6

IDaqEngine
acquired data to the data acquisition engine using the IDaqEngine interface
PutBuffer method. You can then obtain the acquired data with the getdata
toolbox function.

For analog output, GetBuffer passes a buffer full of data from the data
acquisition engine to the adaptor. You must first queue the data in the data
acquisition engine with the putdata toolbox function. The adaptor sends the
buffer of data to the hardware. When the adaptor has finished outputting the
buffer of data, the empty buffer is returned to the data acquisition engine with
the IDaqEngine interface PutBuffer method.

BUFFER_ST is defined in daqmexstructs.h.

See Also
IDaqEngine interface: PutBuffer

GetBufferingConfig

Syntax
HRESULT GetBufferingConfig(long *BufferSizeSamples, long *Num-
Buffers)

Output Parameters

Description
The GetBufferingConfig method is used to determine the data acquisition
engine’s setting for the object’s BufferingConfig property. The first element of
the vector (BufferSizeSamples) specifies the block size, while the second
element of the vector (NumBuffers) specifies the number of blocks.

Memory can be allocated either automatically, by the engine, or manually,
depending on the value of the BufferingMode property. If BufferingMode is
Auto, the BufferingConfig property values are automatically set by the data

BufferSize
Samples

Current buffer size in samples. It does not change after start.

NumBuffers Current number of buffers. If the BufferingConfigMode
property is set to auto, this value increases as needed. If the
property is set to manual, the value is fixed from start.
B-17

B Engine Interface Reference

B-1
acquisition engine. If BufferingMode is Manual, you must manually set the
BufferingConfig values. If you change the BufferingConfig values,
BufferingMode is automatically set to Manual.

When memory is automatically allocated by the engine, the block-size value
depends on the sampling rate and is typically a binary number. The number of
blocks is initially set to a value of 30 but can dynamically increase to
accommodate the needs of the engine. In most cases, the number of blocks used
results in a per-channel memory that is somewhat greater than the
SamplesPerTrigger value. When you manually allocate memory, the number
of blocks is not dynamic, and you must take care to ensure that there is
sufficient memory to store the acquired data.

GetTime

Syntax
HRESULT GetTime(double *Time)

Output Parameters

Description
The engine time is defined as the number of seconds since the engine was
loaded. It has a better resolution than the standard system clock.

The GetTime method is useful when calling the DaqEvent method (which takes
current time as an input argument) for posting an event to the object’s
EventLog property.

The following code fragment posts an error event when an underrun condition
occurs to the object’s EventLog property:

double time;
engine->GetTime(&time);
engine->DaqEvent(ERR, time, _samplesOutput, L"Underrun");

Time The current engine time.
8

IDaqEngine
From the preceding DaqEvent method call, the object’s EventLog property
would contain the following structure:

h = ao.EventLog;
h(2).Type
ans =
Error

h(2).Data
ans =
AbsTime: [1999 4 10 13 24 10.3400]
RelSample: 8000
Message: Underrun.

See Also
IDaqEngine interface: DaqEvent

PutBuffer

Syntax
HRESULT PutBuffer(BUFFER_ST *Buffer)

Input Parameters

typedef struct tagBUFFER {
long Size; // In bytes
long ValidPoints; // In raw points

// (MATLAB samples is ValidPoints/channels)
unsigned char *ptr;
DWORD dwAdaptorData; // Reserved by the engine for use by adaptor
unsigned long Flags; // Flag values are defined in
unsigned long Reserved; // Reserved for future use by the engine
hyper StartPoint; // Count of points since start
double StartTime; // Time of the start of the buffer from GetTime
double EndTime; // Time of the end of the buffer from GetTime
} BUFFER_ST;

Buffer BUFFER_ST*
B-19

B Engine Interface Reference

B-2
Description
The PutBuffer method is used to pass data between the adaptor and the
engine. For analog input, PutBuffer passes a buffer of acquired data from the
adaptor to the data acquisition engine. The original buffer that the adaptor
filled with acquired data from the hardware was obtained from the data
acquisition engine with the IDaqEngine interface GetBuffer method. You can
obtain the acquired data from the data acquisition engine with the getdata
toolbox function.

For analog output, PutBuffer passes an empty buffer of data from the adaptor
to the data acquisition engine. The buffer originally contained data that was
queued in the data acquisition engine with the toolbox putdata function. Once
the adaptor finishes outputting the data to the hardware, the empty buffer is
returned to the engine with the PutBuffer method.

BUFFER_ST is defined in daqmexstructs.h.

See Also
IDaqEngine interface: GetBuffer

WarningMessage

Syntax
HRESULT WarningMessage(BSTR Message)

Input Parameters

Description
The WarningMessage method is used by the adaptor to post a warning to the
MATLAB Command Window. For example:

engine->WarningMessage(CComBSTR(L"A warning just occurred."));

The use of a simple wide string in this call in some places in the supplied
adaptors should be considered a bug. If a string that is not a BSTR is passed to
this function from a separate apartment, a segfault occurs.

Message The warning message to show to the user.
0

IDaqEngine
PutInputData

Syntax
HRESULT PutInputData([in] long Timeout,[in] BUFFER_ST *Buffer);

Input Parameters

Description
The PutInputData method is a simplified way for giving information to the
engine, and is an alternative to using GetBuffer and PutBuffer for an input
device. In most cases when creating a DLL-based adaptor, using the
GetBuffer–PutBuffer sequence is preferred because it does not require
copying the data. This function returns success codes containing the buffer
flags that were set in the engine buffer that was filled. The size of the buffer
put must be less than or equal to the current engine buffer size.

The data members of Buffer must be filled in the same way as they are for
PutBuffer.

Engine pseudocode implementation of PutInputData is shown below.

PutInputData(long Timeout, BUFFER_ST *Buffer)
{
 GetBuffer(Timeout,&engineBuffer);
 if (succeded)
 {

copy Buffer to engineBuffer
Call PutBuffer on engineBuffer
Return status if not success or flags otherwise;

 }
else return error
}

Timeout Time in milliseconds to wait for a new buffer. When the
BufferingConfigMode property is set to auto, this routine never
needs to wait, as long as memory is available.

Buffer A pointer to a buffer header for the data.
B-21

B Engine Interface Reference

B-2
GetOutputData

Syntax
HRESULT GetOutputData([in] long Timeout,[out] BUFFER_ST *Buffer);

Input Parameters

Output Parameters

Description
The GetOutputData method is used by remote adaptors to retrieve data for
output. It is an alternative to using GetBuffer and PutBuffer for an output
device. In most cases when creating a DLL based adaptor, using the
GetBuffer–PutBuffer sequence is preferred because it does not require
copying the data. The size of the buffer put must be greater than or equal to the
current engine buffer size.

Timeout Time in milliseconds to wait for a new buffer. When the
BufferingConfigMode property is set to auto, this routine never
needs to wait, as long as memory is available.

Buffer The address of a buffer header for the data.
2

IDaqEnum
IDaqEnum
The IDaqEnum interface is not currently implemented. However, the
ClearEnumValues and RemoveEnumValue methods are implemented, and they
are useful for the IDaqMappedEnum class.

In the future, IDaqEnum will be used to implement an enumerated list of
settable property values for integer and floating-point value types. The
IDaqEnum methods are described below.

AddEnumValues
Not yet implemented.

Syntax
HRESULT AddEnumValues(VARIANT* values)

Input Parameters

Description
The AddEnumValues method is used to add enumerated values to a property.

To add more than one value, place the desired values in a SAFEARRAY and
pass the SAFEARRAY in the VARIANT.

ClearEnumValues

Syntax
HRESULT ClearEnumValues()

Parameters
None

Description
The ClearEnumValues method clears the property’s current enumerated list.
This allows you to create a completely new enumerated list for the specified
property.

Value VARIANT*
B-23

B Engine Interface Reference

B-2
For example, initially the ChannelSkewMode property can be set to None,
Equisample, Manual, or Minimum. However, the sound card’s ChannelSkewMode
property can only be set to None. Therefore, from within the adaptor’s Open
method, the ChannelSkewMode property is modified to have only one possible
setting of None.

hRes=GetProperty(L"ChannelSkewMode", &prop);
if (!(SUCCEEDED(hRes))) return hRes;
prop->ClearEnumValues();
prop->AddMappedEnumValue(CHAN_SKEW_NONE,L"None");
prop->put_DefaultValue(CComVariant(CHAN_SKEW_NONE));
prop->put_Value(CComVariant(CHAN_SKEW_NONE));
prop.Release();

Note that the same end result can be obtained with the RemoveEnumValue
method of the IDaqEnum interface.

See Also
RemoveEnumValue, IDaqMappedEnum::AddMappedEnumValue

RemoveEnumValue

Syntax
HRESULT RemoveEnumValue(BSTR StringValue)

Input Parameters

Description
The RemoveEnumValue method allows you to remove specific enumerated values
from a property.

For example, initially the ChannelSkewMode property can be set to None,
Equisample, Manual, or Minimum. However, the sound card’s ChannelSkewMode
property can only be set to None. Therefore, from within the adaptor’s Open
method, the ChannelSkewMode property is modified to have only one possible
setting of None. The GetProperty method of the IDaqEngine interface returns
a pointer, prop, to the IProp interface for the ChannelSkewMode property.

StringValue BSTR
4

IDaqEnum
 GetProperty(L"ChannelSkewMode", &prop);
 prop->RemoveEnumValue(L"Equisample");
 prop->RemoveEnumValue(L"Manual");
 prop->RemoveEnumValue(L"Minimum");

Note that the same end result can be obtained by using the ClearEnumValues
and AddMappedEnumValue methods of the IProp interface.

See Also
IDaqEngine interface: GetProperty
IProp interface: AddMappedEnumValue, ClearEnumValues

EnumValues
Not yet implemented.

Output Parameters

Purpose
This function returns a standard IEnumVARIANT interface to allow the device to
enumerate through all possible values.

EnumVARIANT IEnumVARIANT**
B-25

B Engine Interface Reference

B-2
IDaqMappedEnum
A MappedEnum value represents a mapping between string and integer values.
The three methods are AddMappedEnumValue, FindString, and FindValue.
When a MappedEnum value is used, the engine takes care of the translation from
string to numeric value and passes the numeric value to the adaptor when
necessary. The IDaqMappedEnum methods are described below.

AddMappedEnumValue

Syntax
HRESULT AddMappedEnumValue(long Value, BSTR StringValue)

Input Parameters

Description
The AddMappedEnumValue method is used to add enumerated property settings
to a property. Enumerated values are represented as either a string or an
integer value.

The following code fragment modifies an existing property, ChannelSkewMode,
to have adaptor-specific enumerated settings:

engine->GetProperty(L"ChannelSkewMode", &prop);
prop->ClearEnumValues();
prop->AddMappedEnumValue(0,CComBSTR(L"None"));

The GetProperty method of the IDaqEngine interface returns a pointer, prop,
to the IProp interface for the ChannelSkewMode property.

See Also
IDaqEngine interface: GetProperty
IDaqEnum interface: ClearEnumValues, RemoveEnumValue

Value long

StringValue LPCOLESTR
6

IDaqMappedEnum
FindString

Syntax
HRESULT FindString ([in] long Value,[out] BSTR *StringValue);

Input Parameters

Output Parameters

Description
The FindString method translates the integer value to the string. If the value
is not a member of the enumerated set, this function returns the string “Enum
Not Found”.

FindValue

Syntax
HRESULT FindValue ([in,string] wchar_t *StringValue,[out] long
*value);

Input Parameters

Output Parameters

Value Numeric value to be looked up.

StringValue The resulting value of the translation. The caller must free
the BSTR StringValue when done with it.

String String to be looked up.

IntegerValue The resulting value of the translation.
B-27

B Engine Interface Reference

B-2
Description
The FindValue method translates the string into the integer value. In the
event that the string cannot be found in the enumerated list or the string is not
unique, this function returns a dispatch error with extended information in an
IErrorInfo object. To display the message, return the error to the engine.
8

IPropValue
IPropValue
The IPropValue interface is the preferred way to retrieve the value of a given
property. These methods are duplicated in IProp. Note that the IProp interface
is going to be obsolete in the future. The IPropValue methods are described
below.

get_Value

Syntax
HRESULT get_Value(VARIANT *pVal)

Output Parameters

Description
The get_Value method returns the current value of the property. get_Value is
generally used within the SetProperty or SetChannelProperty method when
a certain setting of a property affects the value of another property.

For example, the following code fragment modifies the SampleRate property
based on the StandardSampleRates property value.

CRemoteProp IStdSrProp;
IStdSrProp.Attach(GetPropRoot(),L"StandardSampleRates");
variant_t standardSR;
IStdSrProp ->get_Value(&standardSR);

switch ((bool)standardSR){
case false:
// StandardSampleRate is off. Do something to the SampleRate prop.
case true:
// StandardSampleRate is on. Do something to the SampleRate prop.
}

See Also
IDaqEngine interface: GetProperty

pVal VARIANT*
B-29

B Engine Interface Reference

B-3
put_Value

Syntax
HRESULT put_Value(VARIANTREF newVal)

Input Parameters

Description
The put_Value method allows you to set the current value of a property. This
method is generally called within the adaptor’s Open method when configuring
properties at initialization, and within the adaptor’s SetProperty and
SetChannelProperty methods when the value of one property affects the value
of another property.

The following code fragment sets the current value of the SampleRate property
to 8000.

CComPtr<IPropValue>
GetProperty(L"SampleRate", &prop);
prop->put_Value(CcomVariant(8000L));

See Also
IDaqEngine interface: GetProperty

newVal The new value of the property.
0

IPropContainer
IPropContainer
The IPropContainer interface is the main interface for property containers.
The property containers within the Data Acquisition Toolbox are structures of
properties that relate to

• A channel group

• A channel

• The structure returned by the daqhwinfo toolbox function

The methods of the IPropContainer interface allow you to add device-specific
properties to property containers and modify property values. IPropContainer
methods are generally called from the

• AdaptorInfo method for configuring the properties returned by daqhwinfo

• Open method for creating device-specific properties

• SetProperty method, when modifying a device property affects the property
value of another property

• SetChannelProperty method, when modifying a channel property affects the
current value of another property

• ChildChange method, when adding or deleting a channel

Each property structure defined above has its own IPropContainer interface.
In order to change the characteristics of the property structure, you must have
a pointer to the IPropContainer interface for that property structure. The
IPropContainer interface pointer can be obtained from

• The engine interface using QueryInterface.

• Another container using GetMemberInterface. For example, daqhwinfo is
retrieved this way.

• The GetChannelContainer method of the IChannelList interface.

• Within the AdaptorInfo method.

• Within the ChildChange method.

The GetMember and GetChannelContainer methods both return a pointer to
the IPropContainer interface for the interface that you are getting. The
following commands return a pointer to the IPropContainer interface for a
channel group.
B-31

B Engine Interface Reference

B-3
CComQIPtr<IPropContainer, &__uuidof(IPropContainer)> pCont;
engine->GetProperty(NULL,&pCont);

The following commands return a pointer to the IPropContainer interface for
the structure returned by the daqhwinfo toolbox function.

CComQIPtr<IPropContainer, &__uuidof(IPropContainer)> pCont
engine->GetProperty(L"daqhwinfo",&pCont);

The following commands return a pointer to the IPropContainer interface for
the first channel.

CComQIPtr<IPropContainer, &__uuidof(IPropContainer)> pCont;
hRes = engine->GetChannelContainer(0, &pCont);

The IPropContainer methods are described below.

CreateProperty

Syntax
HRESULT CreateProperty ([in,string] LPCOLESTR Name,[in] VARIANT
*InitialValue,[in] REFIID RequestedIID, [out,iid_is(ReuestedIID0]
void **NewProp)
2

IPropContainer
Input Parameters

Output Parameters

Description
The CreateProperty method adds a property to a property structure. Note that
the CmwDevice class implements helper functions CreateProperty and
CreateChannelProperty that can be called instead of this function.

template <class T>
HRESULT CreateProperty(LPCWSTR name, VARIANT *value, T** prop)
{
RETURN_HRESULT(_EnginePropRoot->CreateProperty(name,value,__uuid
of(T),(void**)prop)); return S_OK;
}

CreateProperty is typically called from within the Open method. The first
input argument passed to CreateProperty contains the name of the property
that is being created. The second input argument contains the initial value of
the property and is also the default value. CreateProperty returns a pointer to
the requested interface. This allows access to the methods that are used for
configuring the property.

For example, the following code fragment creates a property called MyProperty
that has a default value of 0 and can range from 0 to 100.

CreateProperty(L"MyProperty", &CComVariant(0L), &NewProp);
NewProp->setRange(&CComVariant(0L), &CComVariant(100L));

The following code fragment creates a property called MyProperty2 that has a
default value of On and can be set to either On or Off. MyProperty2 cannot be
modified while the object is running.

Name The name of the property being created.

InitialValue The property’s initial value. The data type of the property is
taken from the data type of this value.

RequestedIID The IID of the property interface to be created and returned
in NewProp.

NewProp The requested interface to the property that was created.
B-33

B Engine Interface Reference

B-3
CreateProperty(L"MyProperty2", &CComVariant(true), &NewProp);
NewProp->put_IsReadonlyRunning(true);

Note that by passing an initial value of true, a Boolean property is created. A
Boolean property can be set to either On or Off, where a value of true maps to
a property value of On and an integer value of 1, and a value of false maps to
a property value of Off and an integer value of 0.

The following example creates a property called MyProperty3 that can be set to
Celsius, Fahrenheit, or Kelvin. The property has a default value of
Fahrenheit and a current value of Celsius.

CreateProperty(L"MyProperty3", NULL, &NewProp);
NewProp->AddMappedEnumValue(0,CComBSTR(L"Celsius"));
NewProp->AddMappedEnumValue(1,CComBSTR(L"Fahrenheit"));
NewProp->AddMappedEnumValue(2,CComBSTR(L"Kelvin"));
NewProp->put_DefaultValue(CComVariant(1));
NewProp->put_Value(CComVariant(0));

Note that by passing an initial value of NULL, you create an enumerated
property. The interface method AddMappedEnumValue is used to add
enumerated values to the property.

See Also
IDaqMappedEnum interface: AddMappedEnumValue, put_IsReadonlyRunning,
put_DefaultValue, put_Value, setRange

GetMemberInterface

Syntax
HRESULT GetMemberInterface(LPCOLESTR MemberName, REFIID
RequestedInterface, void **Interface)
4

IPropContainer
Input Parameters

Output Parameters

Description
The GetMemberInterface method returns an interface pointer to an existing
property. Note that the CmwDevice methods GetProperty and
GetChannelProperty supply a simplified interface to this function. The code for
GetProperty is given here as an example of the use of this function.

template <class T>
HRESULT GetProperty(LPCWSTR name, T** prop)
{
RETURN_HRESULT(_EnginePropRoot->GetMemberInterface(
name,__uuidof(T),(void**)prop)); return S_OK;
}

MemberName The property name.

Requested
Interface

The interface that is used.

Interface The requested interface if found, or NULL otherwise.
B-35

B Engine Interface Reference

B-3
put_MemberValue

Syntax
HRESULT put_MemberValue(LPCOLESTR MemberName, VARIANTREF newVal)

Input Parameters

Description
The put_MemberValue method sets the value of a property. put_MemberValue is
typically used when setting the value of a property contained by the daqhwinfo
property structure. The first input argument contains the name of the property
that is being modified. The second input argument contains the new value for
the property being modified. This function is a shortcut for retrieving an
IPropValue interface for the given property and accessing its value.

For example, the following command sets the AdaptorName field of the
daqhwinfo structure to winsound.

GetHwInfo()->put_MemberValue(L"adaptorname",CComVariant(L"winsou
nd"));

The following command sets the TotalChannels field of the daqhwinfo
structure to 2.

GetHwInfo()->put_MemberValue(L"totalchannels",CComVariant(2L));

MemberName The property name.

newVal A reference to the new value.
6

IPropContainer
get_MemberValue

Syntax
HRESULT get_MemberValue(LPCOLESTR MemberName, VARIANT *pVal)

Input Parameters

Output Parameters

Description
The get_MemberValue method returns the current value of a property. This
function is a shortcut for retrieving an IPropValue interface for the given
property and accessing its value.

For the sound card, up to two channels can be added. If one channel is added,
sound is recorded and played in mono. If two channels are added, sound is
recorded and played in stereo. By default, if one channel is added to the
winsound object, the channel is assigned a ChannelName of Mono. If a second
channel is added, and you have not renamed the first channel, the two channels
have the names Left and Right.

The following code fragment determines the first channel’s ChannelName
property value:

CComVariant pVal;
CComQIPtr<IPropContainer> pCont;
GetChannelContainer(0, &pCont);
pCont->get_MemberValue(L"channelname", &pVal);

Note: engine is a pointer to the IDaqEngine interface that was obtained from
the adaptor’s Open method. The IPropContainer interface for the first channel
is returned to pCont.

See Also
IChannelList interface: GetChannelContainer

MemberName The requested property name.

pVal The property’s current value.
B-37

B Engine Interface Reference

B-3
IChannel
IChannel is the interface to an individual channel. An IChannel interface is
acquired by calling IChannelList::GetChannelContainer. An IChannel
interface should not be stored for a device that is not running. Deleting a
channel invalidates the IChannel interface for that channel. An IChannel
object implements all methods of IPropContainer plus the methods described
below.

get_PropValue

Syntax
HRESULT get_PropValue(REFIID MemberIID, IPropRoot* Member, [out,
retval] VARIANT *pVal)

Input Parameters

Output Parameters

Description
The get_PropValue function retrieves the value of a property for a given
channel. This function is more efficient than using get_MemberValue because
it does not require looking up the string name of the property.

MemberIID IID of the interface passed in as Member. It must be derived
from IPropRoot.

Member An interface to the channel property whose value is desired.

pVal The value of the member property for the given channel.
8

IChannel
put_PropValue

Syntax
HRESULT put_PropValue(REFIID riid, IPropRoot* Member, VARIANTREF
NewVal)

Input Parameters

Output Parameters

Description
The put_PropValue function sets the value of a property on a given channel.
This function is more efficient than using set_MemberValue because it does not
require looking up the string name of the property.

UnitsToBinary

Syntax
HRESULT UnitsToBinary([in] double UnitsVal, [out] VARIANT *pVal)

Input Parameters

Output Parameters

Description
This function performs the conversion based on the current settings of the
given channel.

MemberIID IID of the interface passed in as Member. It must be derived
from IPropRoot.

Member An interface to the channel property whose value is set.

NewVal The new value for the property.

UnitsVal The value to convert in the user’s units.

pVal The converted value in native data type.
B-39

B Engine Interface Reference

B-4
BinaryToUnits

Syntax
HRESULT BinaryToUnits([in] VARIANTREF BinaryVal,[out] double
*UnitsVal)

Input Parameters

Output Parameters

Description
This function performs the conversion based on the current settings of the
given channel.

BinaryValue The value to convert stored in the native data type of the
device.

UnitsVal The converted value in units.
0

IChannelList
IChannelList
The MemberValue property inherited from IPropContainer is not implemented
for IChannelList because each member does not have one unique value. The
IChannelList methods are described below.

GetChannelContainer

Syntax
HRESULT GetChannelContainer (long index, REFIID requestedInterface,
void **Container)

Input Parameters

Output Parameters

Description
The GetChannelContainer method is used to obtain an IPropContainer
interface pointer to a specific channel. The index argument specifies the index
of the channel (zero-based). An index of 0 specifies the first channel, an index
of 1 specifies the second channel, and so on.

The following command fragment returns an IPropContainer interface
pointer, Container, for the second channel in the channel array.

CComQIPtr<IPropContainer> Container;
GetChannelList() ->GetChannelContainer(1,
&__uuidof(IPropContainer), &Container);*

The IPropContainer interface pointer allows you to obtain or modify the
characteristics of the second channel. For example, the following code fragment
determines the current property value of the second channel’s ChannelName
property.

index The channel requested.

requested
Interface

Usually &__uuidof(IChannel).

Container The container for the requested channel.
B-41

B Engine Interface Reference

B-4
CComVariant val;
Container->get_MemberValue(L"channelname", &val);

The second channel’s ChannelName property can be modified with the following
command.

CComVariant val = L"NewChannelName";
Container->put_MemberValue(L"channelname", val);

The CmwDevice class supplies a helper template for this function, simplifying
its use. Using this template in the preceding example, the starred line can be
replaced with

GetChannelContainer(1, &Container);

See Also
IPropContainer interface: get_MemberValue, put_MemberValue

GetChannelStruct
GetChannelStructLocal

Syntax
HRESULT GetChannelStruct (long index, NESTABLEPROP **Channel);

Input Parameters

Output Parameters

Description
The GetChannelStruct method returns the channel structure for the specified
channel to Channel. The index argument specifies the index of the channel
(zero-based). An index of 0 specifies the first channel, an index of 1 specifies the
second channel, and so on.

index The zero-based index for the channel to be retrieved.

Channel The data structure for the requested channel.
2

IChannelList
GetChannelStructLocal returns the actual pointer to the structure. It must
never be deleted. GetChannelStruct returns a standard output ptr and the
data must be deleted with CoTaskMemFree.

NESTABLEPROP is defined in mwstructs.h and is given below.

typedef struct tagNESTABLEPROP
{
long StructSize;
long Index;
NESTABLEPROPTYPES Type;
long HwChan;
BSTR Name;
} NESTABLEPROP;

The NESTABLEPROPTYPES are used to categorize the channel structure as an
analog input channel, an analog output channel, or a digital I/O line.
NESTABLEPROPTYPES is defined in mwstructs.h and is given below.

typedef enum tagNESTABLEPROPTYPES
{
NPAICHANNEL,
NPAOCHANNEL,
NPDIGITALLINE
} NESTABLEPROPTYPES;

GetNumberOfChannels

Syntax
HRESULT GetNumberOfChannels (long *numChans)

Output Parameters

Description
The GetNumberOfChannels method returns the number of channels contained
in a channel group.

numChans The current number of channels.
B-43

B Engine Interface Reference

B-4
CreateChannel (proposed)

Syntax
HRESULT CreateChannel(long HwChannel,[out]IPropContainer** Cont);

Input Parameters

Output Parameters

Description
The purpose of CreateChannel is to get the channel structure for an existing
channel. This function is currently not implemented and its interface might
change.

DeleteChannel

Syntax
HRESULT DeleteChannel(long index);

Input Parameters

Description
Deletes the specified channel or line. This function causes callbacks to the
ChildChange function.

HwChannel long

Cont An interface to the channel created.

index Zero-based index of the channel to delete.
4

IChannelList
DeleteAllChannels

Syntax
HRESULT DeleteAllChannels();

Description
The DeleteAllChannels function deletes all channels or lines. This function
causes callbacks to the ChildChange function. You should use
DeleteAllChannels when you change a property that invalidates the current
configuration. It is currently used by the nidaq adaptor when the InputType
property is changed from single-ended to differential.
B-45

B Engine Interface Reference

B-4
6

The NESTABLEPROP Structure C-5
C

Engine Structures

The BUFFER_ST Structure C-3

C Engine Structures

C-2
This section describes engine-defined structures and enumerated data types.
The base structures are defined in daqmex.h, built from the IDL file
daqmex.idl by the MIDL compiler.

Other definitions and structures needed by an adaptor can be found in
daqmexstructs.h. Over time, many of the definitions found in
daqmexstructs.h can be moved to daqmex.idl to improve the information
available in the type library.

The BUFFER_ST Structure
The BUFFER_ST Structure

Used by
ImwDevice interface: AllocBufferData, FreeBufferData, PeekData

IDaqEngine interface: GetBuffer, PutBuffer, GetOutputData, PutInputData

Definition
typedef struct tagBUFFER {
long Size; // In bytes
long ValidPoints; // In raw points

//(MATLAB samples is ValidPoints/channels)
unsigned char *ptr;
DWORD dwAdaptorData; // Reserved by the engine for use by adaptor
unsigned long Flags; // Flag values are defined in
unsigned long Reserved; // Reserved for future use by the engine
hyper StartPoint; // Count of points since start
double StartTime; // Time of the start of the buffer from GetTime
double EndTime; // Time of the end of the buffer from GetTime
} BUFFER_ST;

Description
The fields contained by the BUFFER_ST structure are given below.

Table C-1: BUFFER_ST Fields

Field Name Description

Size Size of the buffer pointed to by ptr in bytes.

ValidPoints Total number of data points in the buffer or requested to
be put into the buffer. ValidPoints/number of channels
is usually the buffer size returned by the
BufferingConfig property.

ptr Pointer to the data contained in the buffer.

dwAdaptorData Reserved in the engine for use by the adaptor as needed.

Flags Indicates information about the buffer.
C-3

C Engine Structures

C-4
Bit values for the Flags field are given below. Note that all values can be ORed
together.

StartPoint Number of points since start.

StartTime Time of the start of the buffer from
IDaqEngine->GetTime.

EndTime Time of the end of the buffer from
IDaqEngine->GetTime.

Table C-1: BUFFER_ST Fields (Continued)

Field Name Description

Table C-2: Bit Values for the Flags Field

Defined String Value Description

BUFFER_GAP_BEFORE 0x1 Set this flag when data in the buffer is noncontiguous
with data in the previous buffer. Noncontiguous data can
come from a different trigger, or it can arise when data is
lost between buffers.

BUFFER_START_TIME_VALID 0x2 Set this flag if the adaptor has put a valid time into the
StartTime.

BUFFER_END_TIME_VALID 0x4 Set this flag if the adaptor has put a valid time into the
EndTime.

BUFFER_IS_LAST 0x8 Set by the engine to notify the adaptor that input/output
can stop at the end of this buffer. Determine how many
samples to transfer from ValidPoints. If the adaptor did
not completely fill previous buffers or if new data is
available for output, this flag might not be accurate.

BUFFER_TRANSMIT_DATA 0x10 The buffer contains valid data and should be
transmitted over the network.

The NESTABLEPROP Structure
The NESTABLEPROP Structure

Definition
typedef struct tagNESTABLEPROP
{
long StructSize;
long Index;
NESTABLEPROPTYPES Type;
long HwChan;
BSTR Name;
} NESTABLEPROP;

Description
The fields contained by the NESTABLEPROP structure are given below.

Enum NESTABLEPROPTYPES Definition
typedef enum tagNESTABLEPROPTYPES
{
NPAICHANNEL,
NPAOCHANNEL,
NPDIGITALLINE
} NESTABLEPROPTYPES;

The structure NESTABLEPROP is defined for the purpose of function declarations
and COM. A pointer to a NESTABLEPROP can be cast to a pointer to one of the
following classes, depending on the value of the Type member.

Table C-3: NESTABLEPROP Fields

Field Name Description

StructSize Size of the structure in bytes.

Index Channel or line index.

Type Type of channel or line.

HwChan Hardware channel or hardware line.

Name Channel name or line name.
C-5

C Engine Structures

C-6
typedef struct tagAICHANNEL {
NESTABLEPROP Nestable;
BSTR Units;
double VoltRange[2];
double UnitRange[2];
double SensorRange[2];
double ConversionExtraScaling; // Can be modified by the adaptor
double ConversionOffset; // Extra offset for scaling data
double NativeOffset; // The adaptor should consider this read only
double NativeScaling; // Same here
BYTE extra[]; // do not access this NPextrasize is
Nestable.StructSize-sizeof(AICHANNEL)
} AICHANNEL;

typedef struct tagAOCHANNEL {
NESTABLEPROP Nestable;
BSTR Units;
double VoltRange[2];
double UnitRange[2];
double ConversionExtraScaling; // Can be modified by the adaptor
double ConversionOffset;
double NativeOffset; // The adaptor should consider this read only
double NativeScaling;
double DefaultValue;
BYTE extra[];
} AOCHANNEL;

typedef struct tagDIGITALLINE {
NESTABLEPROP Nestable;
long Direction;
long Port;
BYTE extra[];
} DIGITALLINE;

Adaptor daqhwinfo Table D-3
Analog Input daqhwinfo Table D-3
Analog Output daqhwinfo Table D-5
Digital I/O daqhwinfo Table D-6

Property Info Tables D-7
Analog Input Subsystem Properties D-7
Analog Output Subsystem Properties D-9
Digital I/O Subsystem Properties D-10
D

Sample Property and
daqhwinfo Tables

Table of daqhwinfo Properties D-3

D Sample Property and daqhwinfo Tables

D-2
Chapter 3, “Step-by-Step Instructions for Adaptor Creation,” discusses the use
of daqhwinfo and propinfo tables in preparing to implement your adaptor.
This appendix provides sample daqhwinfo tables and lists the properties that
you should consider for analog input, analog output, and digital I/O
subsystems.

For a complete discussion of the use of these tables when developing an
adaptor, refer to “Step 3.1, Select Property Values, Ranges, and Defaults for
Analog Input” on page 3-19.

Table of daqhwinfo Properties
Table of daqhwinfo Properties
The following tables list the daqhwinfo properties for all Keithley objects.
These tables provide the blueprint for expected behavior when the user issues
a daqhwinfo request on the adaptor, or an object created by the adaptor.

Adaptor daqhwinfo Table
The following table lists the values returned by a call to

daqhwinfo('keithley')

Analog Input daqhwinfo Table
The following table lists the values returned by a call to

daqhwinfo(analoginput('keithley'))

Table D-1: Table of daqhwinfo Properties

Property Value

AdaptorDLLName mwkeithley.dll

AdaptorDLLVersion 1.0

AdaptorName keithley

BoardNames CellArray of all available board names, constructed from the
DriverLINX LDD DevCap.VendorCode and DevCap.ModelCode
fields, plus the logical device number. Available boards are queried
from the registry.

InstalledBoardIDs CellArray of all available boards’ device numbers, specified by the
DriverLINX LDD DeviceNumber field. BoardIDs can be
nonconsecutive.

ObjectConstructorName Constructed from the above BoardIDs plus 'analoginput', etc.
D-3

D Sample Property and daqhwinfo Tables

D-4
Table D-2: Analog Input daqhwinfo Table

Property Value

AdaptorName 'keithley' [hardcoded]

Bits 16

Coupling 'DC Coupled' [hardcoded]

DeviceName Constructed from the DriverLINX LDD DevCap.ModelCode field,
plus the logical device number of the device. For example,
'KPCI-3108 (Device 0)'

DifferentialIDs Dependent on the device. Calculated from the LDD and the INI
file.

Gains Dependent on the device. Calculated from the LDD and the INI
file.

ID Given by the DeviceNumber property of the DriverLINX
Configuration Panel.

InputRanges Unipolar then bipolar ranges as specified in KPCI manual (Note:
not hardcoded, derived from LDD)

MaxSampleRate Depends on currently selected clock.

MinSampleRate Depends on currently selected clock.

NativeDataType int16

Polarity {'Unipolar', 'Bipolar'}

SampleType 0 (sampled) [hardcoded. No boards are SSH]

SingleEndedIDs Dependent on the device. Calculated from the LDD and the INI
file.

SubsystemType 'AnalogInput' [engine]

TotalChannels Dependent on the device. Calculated from the LDD.

Table of daqhwinfo Properties
Analog Output daqhwinfo Table
The following table lists the values returned by a call to

daqhwinfo(analogoutput('keithley'))

VendorDriverDescription Determined from LDD’s DevCap.VendorCode field.

VendorDriverVersion Determined from GetDriverLINXVersion call.

Table D-2: Analog Input daqhwinfo Table (Continued)

Property Value

Table D-3: Analog Output daqhwinfo Table

Property Value

AdaptorName 'keithley' [hardcoded]

Bits 16

Coupling 'DC Coupled' [hardcoded]

DeviceName Constructed from the DriverLINX LDD DevCap.ModelCode field,
plus the logical device number of the device. For example,
'KPCI-3108 (Device 0)'

ID Given by the DeviceNumber property of the DriverLINX
configuration panel.

MaxSampleRate Depends on currently selected Clock.

MinSampleRate Depends on currently selected Clock.

NativeDataType int16

OutputRanges Dependent on the device. Calculated from the LDD.

Polarity {'Unipolar', 'Bipolar'}

SampleType 0 (sampled)

SubsystemType 'AnalogOutput' [engine]
D-5

D Sample Property and daqhwinfo Tables

D-6
Digital I/O daqhwinfo Table
The following table lists the values returned by a call to

daqhwinfo(digitalio('keithley'))

TotalChannels Dependent on the device. Calculated from the LDD.

VendorDriverDescription Determined from LDD’s DevCap.VendorCode field.

VendorDriverVersion Determined from GetDriverLINXVersion call.

Table D-3: Analog Output daqhwinfo Table (Continued)

Property Value

Table D-4: Digital I/O daqhwinfo Table

Property Value

AdaptorName 'keithley' [hardcoded]

DeviceName Constructed from the DriverLINX LDD DevCap.ModelCode field,
plus the logical device number of the device. For example,
'KPCI-3108 (Device 0)'

ID Given by the DeviceNumber property of the DriverLINX
Configuration Panel.

PortDirections Dependent on the device. Calculated from the LDD.

PortIDs Dependent on the device. Calculated from the LDD.

PortLineConfig Dependent on the device. Calculated from the LDD.

PortLineIDs Dependent on the device. Calculated from the LDD.

SubsystemType 'DigitalIO' [engine]

TotalLines Dependent on the device. Calculated from the LDD.

VendorDriverDescription Determined from LDD’s DevCap.VendorCode field.

VendorDriverVersion Determined from GetDriverLINXVersion call.

Property Info Tables
Property Info Tables
The following tables list the properties that should be considered when
deciding on the propinfo table for your adaptor. Use of these properties to
build up a propinfo table is discussed in Chapter 3, “Step-by-Step Instructions
for Adaptor Creation.” For a full description of these properties, consult the
Data Acquisition Toolbox User’s Guide.

Analog Input Subsystem Properties
The table below lists the properties that should be considered for analog input
subsystems, as discussed in “Step 3.1, Select Property Values, Ranges, and
Defaults for Analog Input” on page 3-19.

Table D-5: Analog Input Properties for propinfo Table

Property Typical Adaptor Interaction

BufferinConfig Cannot control this property directly; query through engine’s
GetBufferingConfig method. Typically, buffer sizes or event
notification periods must be multiples of the engine buffer size to
facilitate buffer transfers.

ChannelSkew Closely coupled to SampleRate and ChannelSkewMode properties.
Usually ReadOnly unless ChannelSkewMode is Manual. Not required to
attach unless Manual mode is supported.

ChannelSkewMode If ChannelSkew is not configurable, remove Manual. Attach if Manual is
supported.

ClockSource Extend to include External and/or Software if required. Attach to
implement possible range changes for Internal to/from Software
transition.

InputType Defines coupling for the analog input channels. Use if your hardware
supports software-configurable input types. Typical enumerated
values are SingleEnded and Differential.

SampleRate Almost always attached for an adaptor, to quantize values and/or
check channel skew.

TriggerChannel Might need to attach if hardware triggering is used.
D-7

D Sample Property and daqhwinfo Tables

D-8
TriggerCondition Can change depending on TriggerType. Typically, if hardware
triggering is supported, TriggerCondition changes depending on the
types of triggers implemented.

TriggerConditionVal
ue

See TriggerCondition.

TriggerDelay See TriggerCondition. For hardware triggering, might need to set to
read only and zero if trigger delays are not supported by hardware.

TriggerRepeat If you are performing hardware triggering, you need to monitor this
property to stop, trigger, and start the acquisition until all triggers are
received. Alternatively, do not support trigger repeat for hardware
triggers.

TriggerType Can extend to include hardware triggers. Consult the User’s Guide for
examples of trigger types.

Channel Properties

InputRange Typically one of a list of valid ranges. Most hardware devices define a
gain that sets the input range. When a user selects a range, the
adaptor should set the channel’s range to the closest possible range
that encompasses the required range.

NativeOffset Conversion offset from native (raw) data to input range.

NativeScaling Conversion scaling from native (raw) data to input range.

Table D-5: Analog Input Properties for propinfo Table (Continued)

Property Typical Adaptor Interaction

Property Info Tables
Analog Output Subsystem Properties
The table following lists the properties that should be considered for analog
output subsystems, as discussed in “Step 4.1, Select Property Values, Ranges,
and Defaults for Analog Output” on page 3-47.

Table D-6: Analog Output Properties for propinfo Table

Property Typical Adaptor Interaction

BufferinConfig Cannot control this property directly; query through engine’s
GetBufferingConfig method. Typically, buffer sizes or event
notification periods must be multiples of the engine buffer size to
facilitate buffer transfers.

ClockSource Extend to include External and/or Software if required. Attach to
implement possible range changes for Internal to/from Software
transition.

SampleRate Almost always attached for an adaptor, to quantize values.

TriggerRepeat If you are performing hardware triggering, you need to monitor this
property to stop, trigger, and start the acquisition until all triggers are
received. Alternatively, do not support trigger repeat for hardware
triggers.

TriggerType Can extend to include hardware triggers. Consult the User’s Guide for
examples of trigger types.

Channel Properties

NativeOffset Conversion offset from native (raw) data to input range.

NativeScaling Conversion scaling from native (raw) data to input range.

OutputRange Typically one of a list of valid ranges. Most hardware devices define a
gain that sets the output range. When a user selects a range, the
adaptor should set the channel’s range to the closest possible range
that encompasses the required range.
D-9

D Sample Property and daqhwinfo Tables

D-1
Digital I/O Subsystem Properties
Because the digital I/O subsystem is implemented without any continuous
acquisition or output, the properties should not need modification or
monitoring. See the “Digital I/O daqhwinfo Table” on page D-6 for information
on the digital I/O implementation table.
0

	Introduction
	Overview
	Who Should Read This Document?
	What Knowledge Is Required?
	What Effort Is Required?
	Tools

	Writing an Adaptor Versus Writing a MEX File
	What Is the Adaptor Kit?
	Toolbox Architecture
	Using This Manual

	Tutorial
	Overview
	A Basic View of Toolbox-Engine-Adaptor Relationships

	Example: an Analog Input Session
	Example: an Analog Output Session
	Example: a Digital I/O Session

	Step-by-Step Instructions for Adaptor Creation
	Overview: Building the Adaptor
	Toolbox Adaptors
	The winsound Adaptor
	The cbi Adaptor
	The nidaq Adaptor
	The hpe1432 Adaptor
	The keithley Adaptor

	About the Demo Adaptor Software
	Features
	Limitations
	Modifying the Demo Adaptor
	Limitations of Software-Clocked Adaptors
	Returning Errors from Your Adaptor

	Working with Properties
	Overview
	Accessing Properties from Your Adaptor
	Accessing a Property Using GetProperty
	Attaching to a Property

	Creating Adaptor-Specific Properties
	Modifying Property Values, Defaults, and Ranges
	Setting a Range to Infinity

	Working with Enumerated Properties
	Passing Arrays to MATLAB Using Safe Arrays

	Buffering Techniques
	Overview
	Understanding Engine Buffers
	Implementing Buffering in Your Adaptor
	Direct Buffering
	Intermediate Buffering

	Callbacks and Threading
	Overview
	Monitoring Progress of Acquisition Tasks
	Event Messaging from Device Drivers
	Polling the Driver for Acquisition Status

	Threading Your Adaptor’s Task Monitoring Methods
	Implementing Callbacks in a Separate Thread
	Implementing Event Messaging in a Separate Thread
	Implementing Polling in a Separate Thread

	Adaptor Kit Interface Reference
	Overview
	ImwDevice
	FreeBufferData
	SetChannelProperty
	SetProperty
	Start
	Stop
	GetStatus
	ChildChange

	ImwAdaptor
	AdaptorInfo
	OpenDevice
	TranslateError

	ImwInput
	GetSingleValues
	PeekData
	Trigger

	ImwOutput
	PutSingleValues
	Trigger

	ImwDIO
	ReadValues
	WriteValues
	SetPortDirections

	Engine Interface Reference
	IPropRoot
	GetRange
	SetRange
	GetType
	get_DefaultValue
	put_DefaultValue
	get_IsHidden
	put_IsHidden
	get_IsReadonlyRunning
	put_IsReadonlyRunning
	get_IsReadonly
	put_IsReadonly
	get_User
	put_User
	get_Name
	put_Name
	IsValidValue

	IDaqEngine
	DaqEvent
	GetBuffer
	GetBufferingConfig
	GetTime
	PutBuffer
	WarningMessage
	PutInputData
	GetOutputData

	IDaqEnum
	AddEnumValues
	ClearEnumValues
	RemoveEnumValue
	EnumValues

	IDaqMappedEnum
	AddMappedEnumValue
	FindString
	FindValue

	IPropValue
	get_Value
	put_Value

	IPropContainer
	CreateProperty
	GetMemberInterface
	put_MemberValue
	get_MemberValue

	IChannel
	get_PropValue
	put_PropValue
	UnitsToBinary
	BinaryToUnits

	IChannelList
	GetChannelContainer
	GetChannelStruct
	GetNumberOfChannels
	CreateChannel (proposed)
	DeleteChannel
	DeleteAllChannels

	Engine Structures
	The BUFFER_ST Structure
	The NESTABLEPROP Structure

	Sample Property and daqhwinfo Tables
	Table of daqhwinfo Properties
	Adaptor daqhwinfo Table
	Analog Input daqhwinfo Table
	Analog Output daqhwinfo Table
	Digital I/O daqhwinfo Table

	Property Info Tables
	Analog Input Subsystem Properties
	Analog Output Subsystem Properties
	Digital I/O Subsystem Properties

